Appendix 5

2018 MS4 Stormwater Annual Report

Water Testing Data

Part 1

STORMWATER LABOL ℓ - UR Y ANAL YTICAL RESULTS

NEW HA & CONNECTICUT

CB3140 Quinnipiac G21/18 7.04 6.37 0.65 220 CS3140 Quinnipiac G21/18 G.85 166.5 0.66 115 CS3140 Quinnipiac G21/18 G.85 166.5 0.66 115 CS3141 Quinnipiac G21/18 G.87 181.5 G.06 111 G21/18 G.87 181.5 G.06 111 G21/18 G.87 181.5 G.06 G.87 G.87																A COMPANY OF THE PARK OF THE P
Quinnipia G21/18 7.04 6.37 0.65 Quinnipia 6.21/18 6.85 1.66.5 9.66 Quinnipia 6.21/18 6.87 3.6.42 <0.05 Quinnipia 6.21/18 6.81 181.5 <0.05 Quinnipia 6.21/18 6.81 181.5 <0.05 Quinnipia 6.21/18 6.81 181.5 <0.05 Quinnipia 6.21/18 6.80 386.2 <0.05 Quinnipia 6.21/18 6.83 386.2 <0.05 Mill 6.221/18 6.63 204.5 <0.05 Mill 6.228/18 6.55 304.5 <0.05 Mill 6.228/18 6.55 204.5 <0.05 Mill 6.228/18 6.89 <0.05 <0.05 Mill 6.228/18 6.89 <0.05 <0.05 Mill 6.228/18 6.89 <0.05 <0.05	Bardens Others Co.CO Residual Co.CO (mg/L)	8 1	MBAS (mg-1) a	Americalis as Nitrogen (mg/L)	d'r	Vibrate.N (mg/L)	Great Great	TKN (mg/L)	Total P (mg/L)	188 (Tagel).	Exchenicias Coli (MPN/190 mals)	Enternoceti Bacteria (MFN/10/male)	Focal Coliform MPN (MPN/108mdo)	Total Coliforms (MEN/100mbs)	Conductivity (understen)	g gr
Quinnipiae 621/18 6.85 166.5 0.06 Quinnipiae 621/18 6.58 218.3 <0.05	220 <-0.02	<10	<0.05	9.08	0.0	2.23	4	9.82	6.123	9.8	919	>24,200	909	>24,266	829	<0.5
Quinalpia 6.2L/1S 6.5S 218.3 40.05 Quinalpia 6.2L/1S 6.97 36.42 <0.15 Quinalpia 6.2L/1S 6.81 181.5 <0.05 Quinalpia 6.2L/1S 6.89 38.0.2 <0.05 Quinalpia 6.2L/1S 6.69 38.0.2 <0.05 Alia 6.2L/1S 6.63 204.5 <0.05 Mill 6.22L/1S 6.65 303.0 <0.05 Mill 6.22L/1S 6.89 40.05 Mill 6.22L/1S 6.89 6.0.66 Mill 6.22L/1S 6.89 6.0.66 <0.05	115 <0.02	305	1.15	3.80	100	1.27	7	8.17	0.959	92	1,660	6.879	1,350	>24200	165	60.5
Quinnipiae 6,21/18 6,97 36,42 - G,05 Quinnipiae (221/18 6.81 181.5 - G,05 Quinnipiae (221/18 6.63 386.2 - G,05 Quinnipiae (221/18 6.63 264.5 - G,05 Mill (221/18 6.63 264.5 - G,05 Mill (228/18 6.95 303.0 - G,05 Mill (228/18 7.00 228.0 - G,05 Mill (228/18 6.55 224.9 - G,05 Mill (228/18 6.89 66.86 - G,05 Mill (628/18 6.65 45.56 - G,05	11.1 <0.02	Ē	68'0	98.80	7:0:0	89.0	=	2.65	0.460	911	1,866	>24,206	>24,206	>24,206	92	5.0
Quinntpiac G(21/18) 6.81 181.5 Quinntpiac G(21/18) 6.89 386.2 Quinntpiac G(21/18) 6.63 204.5 Quinntpiac G(21/18) 6.63 204.5 Mill G(22/18) 6.95 303.0 Mill G(28/18) 6.95 303.0	\$.4 <0.02	368	95.0	6.42		9.67	2	66.7	1.25	76	>24,200	>24,200	>24,200	>24,200	88	40.5
Quinnipiae (v21/18 6.89 38.6.2 G.05 Quinnipiae (v21/18 6.63 204.5 G.05 M.3 G.02 M.3 G.02 M.3 G.02 M.3 G.02 M.3 G.02 M.3 G.02 G.05 G.05 G.05 A.0 4.6 5.6 4.6	94.5 <0.02	276	15.0 1.24	7 04	42.60	40.02	3.7	6.17	1.940	961	3,870	2,480	17,300	>24,286	2399	Q1.5
Quinniplic 6/21/18 6.63 204.5 < 0,055 Mill 6/28/18 6.95 303.0 < 0,045 Mill 6/28/18 6.95 303.0 < 0,045 Mill 6/28/18 6.55 224.9 < 0,045 Mill 6/28/18 6.89 66.86 < 0,045 Mill 6/28/18 6.65 45.56 < 0,045	33.0 <0.02	257	6-49	2.98		9.03	\$	88.9	1.510	340	>24,200	>24,200	19,900	>24200	169	20.5
Mill 6/28/18 6.95 363.0 46.05 Mill 6/28/18 700 288.0 40.05 Mill 6/28/18 6.55 224.9 40.05 Mill 6/28/18 6.89 66.86 40.05 Mill 6/28/18 6.89 66.86 40.05	25.3 <0.02	212	86.0	99.1		96.1	5.2	2.77	0.471	130	789	2,360	3	>24,200	5006	°€.
Mill 0.28/18 7 th 28/8.0 <0.05 Mill 6/28/18 6.55 224.9 <0.05	43.2 <6.02	204	9.67	9.42		6.15	2.7	3.32	0.545	200	3,450	12,000	4,116	>242,866	112	\$ 0.5
Mill 6/28/18 6.55 224.9 < 0.05 Mill 6/28/18 6.89 66.89 < 0.05 Mill 6/28/18 6.65 45.26 < 0.05	4.5 <0.02	96	0.23	81.9	1 = 1 1 = 1	6.25	9.1	87 -	0.295	2380	9,806	27,686	7,270	>242,000	**	<0.5
Mill 6/28/18 6.89 66.86 <-0.05	15.4 < 0.02	121	0.11	0.28	9	0.12	3.5	1.58	9.476	92	15.500	29.100	5,170	>242606	7	ė.
MiB 6/28/18 6/65 45.26 <0.05	4.9	9	01.15	0.08	! ! #: 7:	600	4.	1.16	0.231	\$	24,200	61.308	17,300	>242,008	92	ŝ.
	4.4 0.03	ž.	61.62	0.26	z	I a	4	1631	6.249	95	15,500	19,940	11,290	>242,000	91	0.5
CB8803 Mill 6/28/18 6/71 44/79 < 0/105 3.0	3.0 <0.02	38	6.11	9.09	! !	17	27	9.69	0.177	77	36,500	19,900	19,900	>242,000	8	505
CB8494 Mill 6/28/18 6.80 48.50 <0.05 2.7	2.7 <0.02	31	11.0	6 24	£	0.23	4	1.45	0.254	39	2,910	24,200	1,350	>242,000	25	5.05

Notes:
Turbidity and pif field tested by ATC
Turbidity and pif field tested by ATC
Turbidity and pif field tested by ATC
Turbidity and the tested by the tested to the tested by the tes

Monday, July 02, 2018

Mr. Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Project ID:

209118

Sample ID#s: CA75265 - CA75271

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

July 02, 2018

SDG I.D.: GCA75265

Metals Analysis:

The client requested a site specific list of elements which is shorter than the RCP list.

Non RCP analyses are included with this report. The RCP narrative is provided at the request of the client.

Temperature above 6C:

The samples were received in a cooler with ice packs. The samples were delivered to the Laboratory within a short period of time after sample collection. Therefore no significant bias is suspected.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 02, 2018

FOR:

Mr. Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

P.O.#:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

Laboratory Data

Custody Information

CP

see "By" below

Collected by:

Received by:

Analyzed by:

SDG ID: GCA75265

<u>Time</u>

1:40

7:26

Phoenix ID: CA75265

<u>Date</u>

06/21/18

06/21/18

Project ID:

209118

Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Boron	0.05	0.05	mg/L	1	06/28/18	EK	SW6010C
Hardness (CaCO3)	220	0.1	mg/L	1	06/29/18		E200.7
Esmenthia close	616	473	MFN/100 rols	h() 'C' ' .	CORPULATION OF 175	KOP/KD!	
Enterococci Bacteria	>24200	10	MPN/100 mls	10	06/21/18 08:35	KDB/KDI	3 Enterolert
Fecal Coliforms MPN	605	10	MPN/100 mls	1	06/21/18 09:00	KDB/KDI	3 Colilert-18
Total Coliforms	>24200	10	MPN/100 mls	10	06/21/18 08:15	KDB/KDI	3 SW9223B-06
Chlorine Residual	< 0.02	0.02	mg/L	1	06/21/18 20:48	0	SM4500CI-G-00
C.O.D.	< 10	10	mg/L	1	06/22/18	KMH/MS	FSM5220D-11
Conductivity	678	5.00	umhos/cm	1	06/22/18	RWR/KD	BSM2510B-11
MBAS	< 0.05	0.05	mg/L	1	06/21/18 23:55	xs	SM5540 C-11
Ammonia as Nitrogen	0.08	0.05	mg/L	1	06/22/18	WHM	E350.1
Nitrite-N	0.033	0.010	mg/L	1	06/21/18 17:05	MC	E353.2
Nitrate-N	2.23	0.10	mg/L	5	06/21/18 17:06	MC	E353.2
Oil and Grease by EPA 1664A	< 1.4	1.4	mg/L	1	06/22/18	MSF	E1664A
Salinity	< 0.5	0.5	ppt	1	06/21/18	RWR	SM2520B-10
Nitrogen Tot Kjeldahl	0.82	0.10	mg/L	1	06/22/18	WHM	E351.1
Phosphorus, as P	0.123	0.010	mg/L	1	06/21/18	MI	SM4500PE-11
Total Suspended Solids	8.0	5.0	mg/L	1	06/22/18	DA/KH	SM2540D-11
Total Metals Digestion	Completed				06/27/18	AG	

Project ID: 209118

Client ID: 0180

Phoenix I.D.: CA75265

RL/

Parameter Result PQL

Units Dilution

Date/Time

By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 02. 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 02, 2018

FOR:

Mr. Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

P.O.#:

Custody Information

Collected by:

Analyzed by:

Received by:

CP see "By" below

Date 06/21/18 <u>Time</u> 1:55

06/21/18

7:26

Laboratory Data

SDG ID: GCA75265 Phoenix ID: CA75266

Project ID:

209118

Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Boron	0.06	0.05	mg/L	1	06/28/18	EK	SW6010C	
Hardness (CaCO3)	115	0.1	mg/L	1 -	06/28/18		E200.7	
Schelling Land	TE T1460	- 10	Ni:2N/100 mls	10-27-57	2 - 05% or is 18:15	KOB/KOF	3 SM9223B-04	- %
Enterococci Bacteria	6870	10	MPN/100 mls	10	06/21/18 08:35	KDB/KD	3 Enterolert	
Fecal Coliforms MPN	1350	10	MPN/100 mls	1	06/21/18 09:00	KDB/KD	3 Colilert-18	
Total Coliforms	>24200	10	MPN/100 mls	10	06/21/18 08:15	KDB/KD	SW9223B-06	
Chlorine Residual	< 0.02	0.02	mg/L	1	06/21/18 20:48	0	SM4500CI-G-00	
C.O.D.	305	10	mg/L	1	06/22/18	KMH/MS	FSM5220D-11	
Conductivity	165	5.00	umhos/cm	1	06/22/18	RWR/KD	BSM2510B-11	
MBAS	1.15	0.10	mg/L	2	06/21/18 23:56	XS	SM5540 C-11	
Ammonia as Nitrogen	3.80	0.25	mg/L	5	06/22/18	WHM	E350.1	
Nitrite-N	0.044	0.010	mg/L	1	06/21/18 17:07	MC	E353.2	
Nitrate-N	1.27	0.02	mg/L	1	06/21/18 17:07	MC	E353.2	
Oil and Grease by EPA 1664A	4.4	1.4	mg/L	1	06/22/18	MSF	E1664A	
Salinity	< 0.5	0.5	ppt	1	06/21/18	RWR	SM2520B-10	
Nitrogen Tot Kjeldahl	8.17	0.50	mg/L	5	06/22/18	WHM	E351.1	
Phosphorus, as P	0.959	0.050	mg/L	5	06/21/18	MI	SM4500PE-11	
Total Suspended Solids	76	5.0	mg/L	1	06/22/18	DA/KH	SM2540D-11	
Total Metals Digestion	Completed				06/27/18	AG		

Project ID: 209118

Client ID: 3140

Phoenix I.D.: CA75266

RL/

Parameter Result PQL

Units

Dilution

Date/Time

By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 02, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 02, 2018

FOR:

Mr. Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Matrix:

P.O.#:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

Laboratory Data

Custody Information

CP

see "By" below

Collected by:

Received by:

Analyzed by:

SDG ID: GCA75265

Time

3:30

7:26

Phoenix ID: CA75267

Date

06/21/18

06/21/18

Project ID:

209118

Client ID:

3154D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Boron	< 0.05	0.05	mg/L	1	06/28/18	EK	SW6010C	
Hardness (CaCO3)	11.1	0.1	mg/L	1 -	06/28/18		E200.7	
Escherica (Long.	1860	10	MPN/100 mls	70	~ US/2W18 08:15	KDB/KD8	SM9223B-04	~ 2
Enterococci Bacteria	>24200	10	MPN/100 mls	10	06/21/18 08:35	KDB/KDE	3 Enterolert	
Fecal Coliforms MPN	>24200	10	MPN/100 mls	1	06/21/18 09:00	KDB/KD	Colilert-18	
Total Coliforms	>24200	10	MPN/100 mls	10	06/21/18 08:15	KDB/KDE	SW9223B-06	
Chlorine Residual	< 0.02	0.02	mg/L	1	06/21/18 20:51	0	SM4500CI-G-00	
C.O.D.	164	10	mg/L	1	06/22/18	KMH/MS	SM5220D-11	
Conductivity	92	5.00	umhos/cm	1	06/22/18	RWR/KD	BSM2510B-11	
MBAS	0.89	0.10	mg/L	2	06/21/18 23:56	XS	SM5540 C-11	
Ammonia as Nitrogen	0.80	0.25	mg/L	5	06/22/18	WHM	E350.1	
Nitrite-N	0.054	0.010	mg/L	1	06/21/18 17:08	MC	E353.2	
Nitrate-N	0.68	0.02	mg/L	1	06/21/18 17:08	MC	E353.2	
Oil and Grease by EPA 1664A	11	1.4	mg/L	1	06/22/18	MSF	E1664A	
Salinity	< 0.5	0.5	ppt	1	06/21/18	RWR	SM2520B-10	
Nitrogen Tot Kjeldahl	2.65	0.50	mg/L	5	06/22/18	WHM	E351.1	
Phosphorus, as P	0.460	0.010	mg/L	1	06/21/18	MI	SM4500PE-11	
Total Suspended Solids	110	10	mg/L	2	06/22/18	DA/KH	SM2540D-11	
Total Metals Digestion	Completed				06/27/18	AG		

Project ID: 209118 Client ID: 3154D

Phoenix I.D.: CA75267

RL/ PQL

Parameter Result

Units

Dilution

Date/Time

By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 02, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 02, 2018

FOR:

Mr. Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

P.O.#:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

Custody Information

Collected by:

Analyzed by:

Received by:

CP

see "By" below

06/21/18

<u>Date</u>

2:30

<u>Time</u>

06/21/18

7:26

Laboratory Data

SDG ID: GCA75265 Phoenix ID: CA75268

Project ID:

209118

Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Boron	< 0.05	0.05	mg/L	1	06/28/18	EK	SW6010C	-
Hardness (CaCO3)	5.4	0.1	mg/L	1 -	06/28/18		E200.7	
Escheronation a second	Z= >24 200	10	MPN/100 mls	West of the	- 08% 1/46 08:15	KDB/KDI	P SM9223R-04	- 174 4 ± 2
Enterococci Bacteria	>24200	10	MPN/100 mls	10	06/21/18 08:35	KDB/KDI	B Enterolert	
Fecal Coliforms MPN	>24200	10	MPN/100 mls	1	06/21/18 09:00	KDB/KDI	B Colilert-18	
Total Coliforms	>24200	10	MPN/100 mls	10	06/21/18 08:15	KDB/KDI	B SW9223B-06	
Chlorine Residual	< 0.02	0.02	mg/L	1	06/21/18 20:51	0	SM4500CI-G-00	
C.O.D.	368	10	mg/L	1	06/22/18	KMH/MS	FSM5220D-11	
Conductivity	38	5.00	umhos/cm	1	06/22/18	RWR/KD	BSM2510B-11	
MBAS	0.56	0.10	mg/L	2	06/21/18 23:57	xs	SM5540 C-11	
Ammonia as Nitrogen	0.42	0.25	mg/L	5	06/22/18	WHM	E350.1	
Nitrite-N	0.033	0.010	mg/L	1	06/21/18 17:09	MC	E353.2	
Nitrate-N	0.67	0.02	mg/L	1	06/21/18 17:09	MC	E353.2	
Oil and Grease by EPA 1664A	4.8	1.4	mg/L	1	06/22/18	MSF	E1664A	
Salinity	< 0.5	0.5	ppt	1	06/21/18	RWR	SM2520B-10	
Nitrogen Tot Kjeldahl	4.99	0.50	mg/L	5	06/22/18	WHM	E351.1	
Phosphorus, as P	1.25	0.050	mg/L	5	06/21/18	МІ	SM4500PE-11	
Total Suspended Solids	26	10	mg/L	2	06/22/18	DA/KH	SM2540D-11	
Total Metals Digestion	Completed				06/27/18	AG		

Project ID: 209118

Client ID: 3145

Phoenix I.D.: CA75268

RL/

Parameter Result

PQL

Units Dilution

Date/Time

By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 02, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 02, 2018

FOR:

Laboratory Data

Mr. Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr.

Branford, CT 06405

Sample Information

Matrix:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

P.O.#:

Custody Information Collected by:

06/21/18

<u>Time</u> 3:45

Received by:

CP

06/21/18

Date

7:26

Analyzed by:

see "By" below

SDG ID: GCA75265

Phoenix ID: CA75269

Project ID:

209118

Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Boron	< 0.05	0.05	mg/L	1	06/28/18	EK	SW6010C	
Hardness (CaCO3)	94.5	0.1	mg/L	1	06/28/18		E200.7	
Eschenche Cue	36/0	.10	MPN/100 mls	10	- 06/21/18 08:15	KDB/KDE	9 SM9223B-04	.25
Enterococci Bacteria	2480	10	MPN/100 mls	10	06/21/18 08:35	KDB/KD	3 Enterolert	
Fecal Coliforms MPN	17300	10	MPN/100 mls	1	06/21/18 09:00	KDB/KDE	3 Colilert-18	
Total Coliforms	>24200	10	MPN/100 mls	10	06/21/18 08:15	KDB/KD	3 SW9223B-06	
Chlorine Residual	< 0.02	0.02	mg/L	1	06/21/18 20:52	0	SM4500CI-G-00	
C.O.D.	276	10	mg/L	1	06/22/18	KMH/MS	FSM5220D-11	
Conductivity	299	5.00	umhos/cm	1	06/22/18	RWR/KD	BSM2510B-11	
MBAS	0.54	0.10	mg/L	2	06/22/18 22:14	X	SM5540 C-11	
Ammonia as Nitrogen	2.04	0.25	mg/L	5	06/22/18	WHM	E350.1	
Nitrite-N	0.168	0.010	mg/L	1	06/21/18 17:10	MC	E353.2	
Nitrate-N	< 0.02	0.02	mg/L	1	06/21/18 17:10	MC	E353.2	
Oil and Grease by EPA 1664A	3.7	1.4	mg/L	1	06/22/18	MSF	E1664A	
Salinity	< 0.5	0.5	ppt	1	06/21/18	RWR	SM2520B-10	
Nitrogen Tot Kjeldahl	6.17	0.50	mg/L	5	06/22/18	WHM	E351.1	
Phosphorus, as P	1.94	0.050	mg/L	5	06/21/18	MI	SM4500PE-11	
Total Suspended Solids	100	10	mg/L	2	06/22/18	DA/KH	SM2540D-11	
Total Metals Digestion	Completed				06/27/18	AG		

Project ID: 209118

Client ID: 3163

Phoenix I.D.: CA75269

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

The state of the s

July 02, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 02, 2018

FOR:

Mr. Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

P.O.#:

Custody Information

Collected by:

Analyzed by:

Received by:

CP

see "By" below

06/21/18

<u>Date</u>

<u>Time</u> 3:55

06/21/18

7:26

aboratory Data

SDG ID: GCA75265

Phoenix ID: CA75270

Project ID:

209118

Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Boron	< 0.05	0.05	mg/L	1	06/28/18	MA	SW6010C	
Hardness (CaCO3)	33.0	0.1	mg/L	1	06/29/18		E200.7	
Escherich 2 Coli	≥2 4 200	16	MPN/100 mls	¥0 : ∴ ⊍s	- 5 98/21/4 8 08:15	KDB/KDI	3 SM9223B=64	16 July 18 18 18 18 18 18 18 18 18 18 18 18 18
Enterococci Bacteria	>24200	10	MPN/100 mls	10	06/21/18 08:35	KDB/KDI	3 Enterolert	
Fecal Coliforms MPN	19900	10	MPN/100 mls	1	06/21/18 09:00	KDB/KDI	3 Colilert-18	
Total Coliforms	>24200	10	MPN/100 mls	10	06/21/18 08:15	KDB/KDI	3 SW9223B-06	
Chlorine Residual	< 0.02	0.02	mg/L	1	06/21/18 20:53	0	SM4500CI-G-00	
C.O.D.	257	10	mg/L	1	06/22/18	KMH/MS	FSM5220D-11	
Conductivity	169	5.00	umhos/cm	1	06/22/18	RWR/KD	BSM2510B-11	
MBAS	0.49	0.10	mg/L	2	06/22/18 22:14	X	SM5540 C-11	
Ammonia as Nitrogen	2.98	0.25	mg/L	5	06/25/18	WHM	E350.1	
Nitrite-N	0.492	0.020	mg/L	2	06/21/18 17:11	MC	E353.2	
Nitrate-N	0.05	0.04	mg/L	2	06/21/18 17:11	MC	E353.2	
Oil and Grease by EPA 1664A	4.9	1.4	mg/L	1	06/22/18	MSF	E1664A	
Salinity	< 0.5	0.5	ppt	1	06/21/18	RWR	SM2520B-10	
Nitrogen Tot Kjeldahl	6.88	0.50	mg/L	5	06/25/18	WHM	E351.1	
Phosphorus, as P	1.51	0.050	mg/L	5	06/21/18	MI	SM4500PE-11	
Total Suspended Solids	340	10	mg/L	2	06/22/18	DA/KH	SM2540D-11	
Total Metals Digestion	Completed				06/27/18	AG		

Project ID: 209118

Client ID: 3111

Phoenix I.D.: CA75270

RL/

Parameter Result PQL

Units Dilution

Date/Time

By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 02, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 02, 2018

FOR:

Mr. Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

P.O.#:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

Custody Information

Collected by: Received by:

CP

06/21/18

Date

<u>Time</u> 1:45

06/21/18

7:26

Analyzed by: see "By" below

Laboratory Data

SDG ID: GCA75265

Phoenix ID: CA75271

Project ID:

209118

Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Boron	< 0.05	0.05	mg/L	1	06/28/18	MA	SW6010C	
Hardness (CaCO3)	25.3	0.1	mg/L	1	06/29/18		E200.7	
Escheriche College	2017/89	/46	MPN/100 mls	10) ja	795/24/18 08:15	KDB/KDI	3 SM9223B-04	%/ ·
Enterococci Bacteria	2360	10	MPN/100 mls	10	06/21/18 08:35	KDB/KDI	3 Enterolert	
Fecal Coliforms MPN	884	10	MPN/100 mls	1	06/21/18 09:00	KDB/KDI	3 Colilert-18	
Total Coliforms	>24200	10	MPN/100 mls	10	06/21/18 08:15	KDB/KDI	3 SW9223B-06	
Chlorine Residual	< 0.02	0.02	mg/L	1	06/21/18 20:55	0	SM4500CI-G-00	
C.O.D.	212	10	mg/L	1	06/22/18	KMH/MS	FSM5220D-11	
Conductivity	506	5.00	umhos/cm	1	06/22/18	RWR/KD	BSM2510B-11	
MBAS	0.98	0.10	mg/L	2	06/22/18 22:15	X	SM5540 C-11	
Ammonia as Nitrogen	1.06	0.25	mg/L	5	06/25/18	WHM	E350.1	
Nitrite-N	0.056	0.010	mg/L	1	06/21/18 17:23	MC	E353.2	
Nitrate-N	1.00	0.02	mg/L	1	06/21/18 17:23	MC	E353.2	
Oil and Grease by EPA 1664A	5.7	1.4	mg/L	1	06/22/18	MSF	E1664A	
Salinity	< 0.5	0.5	ppt	1	06/21/18	RWR	SM2520B-10	
Nitrogen Tot Kjeldahl	2.77	0.50	mg/L	5	06/25/18	WHM	E351.1	
Phosphorus, as P	0.471	0.010	mg/L	1	06/21/18	MI	SM4500PE-11	
Total Suspended Solids	120	5.0	mg/L	1	06/22/18	DA/KH	SM2540D-11	
Total Metals Digestion	Completed				06/27/18	AG		

Project ID: 209118

Client ID: 3245

Phoenix I.D.: CA75271

RL/

Parameter Result

PQL

Units

Dilution

Date/Time

By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 02, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

July 02, 2018

QA/QC Data

SDG I.D.: GCA75265

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 436430 (mg/L),	QC Samp	le No:	CA75265	(CA752	65, CA	75266,	CA7526	57, CA7	5268,	CA75269), CA7	5270, C	A75271)
ICP Metals - Aqueous													
Boron	BRL	0.05	0.05	0.05	NC	99.8			105			75 - 125	20

Dup

Result Result

Sample

Blk

Blank RL

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

July 02, 2018

Parameter

QA/QC Data

Dup

RPD

LCS

%

LCSD

%

RPD

SDG I.D.: GCA75265 Rec RPD MSD MS RPD Limits Limits % %

Comment: Additional criteria matrix spike acceptance range is 75-125%. Ammonia as Nitrogen BRL 0.05 24.4 25.6 4.80 97.9 98.5 90.110 20 Ammonia as Nitrogen Tot Kjeldahl BRL 0.10 34.8 35.9 3.10 98.8 97.5 85.115 20 Comment: TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS. CA/QC Batch 435690 (mg/L), QC Sample No: CA74682 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA7570) Phosphorus, as P BRL 0.01 3.54 3.62 2.20 102 101 85.115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. CA/QC Batch 435690 (mg/L), QC Sample No: CA74718 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA7570) BBL 0.01 0.010 0.010 NC 105 106 90.110 90.										
Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435619 (mg/L), QC Sample No: CA74673 (CA75265, CA75266, CA75267, CA75268, CA75269) Nitrogen BRL 0.05 24.4 25.6 4.80 97.9 98.5 90.110 20 Nitrogen Tot Kjeldahl BRL 0.10 34.8 35.9 3.10 98.8 97.5 85-115 20 Comment: TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS. QA/QC Batch 435590 (mg/L), QC Sample No: CA74682 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75. Phosphorus, as P BRL 0.01 3.54 3.62 2.20 102 101 85-116 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435650 (mg/L), QC Sample No: CA74718 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75269, CA75270, CA75268, CA75269, CA75270, CA75268, CA75269, CA75270, CA75269, CA75270, CA75268, CA75269, CA75270, CA75269, CA75269, CA75269, CA75270, CA75269, CA75	QA/QC Batch 435827 (mg/L)	, QC Samp	le No:	CA73421	(CA752	65, CA	75266, C	A75267)		
Additional criteria matrix spike acceptance range is 75-125%. CAVICC Batch 435619 (mg/L), QC Sample No: CA74673 (CA75265, CA75266, CA75267, CA75268, CA75268, CA75269) Ammonia as Nitrogen BRL 0.10 24.8 35.9 3.10 98.8 97.5 98.5 90.110 20 Nitrogen Tot Kjeldahi BRL 0.10 34.8 35.9 3.10 98.8 97.5 98.5 115 20 Comment: TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS. CA/QC Batch 435690 (mg/L), QC Sample No: CA74682 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270,	C.O.D.	BRL	10	25	25	NC	100	101	85 - 115	20
QA/QC Batch 435619 (mg/L), QC Sample No: CA74673 (CA75265, CA75266, CA75267, CA75268, CA75269, Sec. 115 20 20 24.4 25.6 4.80 97.9 88.5 90.110 20 20 20 20 20 20 20 20 20 20 20 20 20	Comment:									
Ammonia as Nitrogen BRL 0.05 24.4 25.6 4.80 97.9 98.5 90.710 20. Nitrogen Tot Kjeldahi BRL 0.10 34.8 35.9 3.10 98.8 97.5 98.5 90.710 20. Nitrogen Tot Kjeldahi BRL 0.10 34.8 35.9 3.10 98.8 97.5 97.5 85.115 20. Comment: TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS. QA/QC Batch 435590 (mg/L), QC Sample No: CA/4682 (CA/5265, CA/5266, CA/5267, CA/5268, CA/5269, CA/5269, CA/5270, CA/5260, CA/5260	Additional criteria matrix spike	acceptance	range is	75-125%.						
Nitrogen Tot Kjeldahl	QA/QC Batch 435619 (mg/L)), QC Samp	le No:	CA74673	(CA752	65, CA	75266, C	CA75267, CA75268, CA7526	9)	
Comment: TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS. QA/QC Batch 435590 (mg/L), QC Sample No: CA74682 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75.) Phosphorus, as P BRL 0.01 3.54 3.62 2.20 102 101 85-115 20 20 20 20 20 20 20 20 20 20 20 20 20	•								90 - 110	20
QA/QC Batch 435590 (mg/L), QC Sample No: CA74682 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75269, CA75269	• ,	BRL	0.10	34.8	35.9	3.10	98.8	97.5	85 - 115	20
Phosphorus, as P	` **	•								
Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435650 (mg/L), QC Sample No: CA74718 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270) Nitrite-N BRL 0.02 0.21 0.22 4.70 105 108 09.110 20 QA/QC Batch 435936 (mg/L), QC Sample No: CA74915 (CA75270, CA75271) Ammonia as Nitrogen BRL 0.05 0.27 0.25 7.70 106 101 90-110 20 QA/QC Batch 435936 (mg/L), QC Sample No: CA74915 (CA75270, CA75271) Ammonia as Nitrogen BRL 0.05 0.27 0.25 7.70 106 101 90-110 20 QA/QC Batch 435936 (mg/L), QC Sample No: CA75080 (CA75270, CA75271) Ammonia as Nitrogen in the Blank, LCS, DUP and MS. QA/QC Batch 435703 (mg/L), QC Sample No: CA75080 (CA75265, CA75271) Total Suspended Solids BRL 5.0 8.0 8.0 NC 92.0 85-115 20 QA/QC Batch 435685 (mg/L), QC Sample No: CA75265 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75 Chlorine Residual BRL 0.02 <0.02 <0.02 NC 89.0 QA/QC Batch 435684 (mg/L), QC Sample No: CA75265 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435888 (mg/L), QC Sample No: CA75270 (CA75269, CA75270, CA75271) Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435888 (mg/L), QC Sample No: CA75270 (CA75269, CA75269, CA75270, CA75271) Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435888 (mg/L), QC Sample No: CA75270 (CA75269, CA75269, CA75270, CA75271) BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435898 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 COMMENT SAMPLE NO. CA75260 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75271)	QA/QC Batch 435590 (mg/L)), QC Samp	ole No:	CA74682	(CA752	265, CA	75266, C	CA75267, CA75268, CA7526	9, CA75270, CA	(75271)
QA/QC Batch 435650 (mg/L), QC Sample No: CA74718 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270) Nitrole 1	•	BRL	0.01	3.54	3.62	2.20	102	101	85 - 115	20
Nitrote-Name	Additional criteria matrix spike	acceptance	range is	75-125%.						
Nitrite-N BRL 0.01 < 0.010	QA/QC Batch 435650 (mg/L)), QC Samp	le No:	CA74718	(CA752	265, CA	75266, C	CA75267, CA75268, CA7526	9, CA75270)	
Addictional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75271) Ammonia as Nitrogen BRL 0.05 0.27 0.25 7.70 106 101 90-110 20 Nitrogen Tot Kjeldahl BRL 0.10 1.56 1.52 2.60 104 105 85-115 20 Comment: TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS. QA/QC Batch 435703 (mg/L), QC Sample No: CA75080 (CA75265, CA75271) Total Suspended Solids BRL 5.0 8.0 8.0 NC 92.0 85-115 20 QA/QC Batch 435685 (mg/L), QC Sample No: CA75265 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75 Chlorine Residual BRL 0.02 <0.02 NC 89.0 QA/QC Batch 435684 (mg/L), QC Sample No: CA75265 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75269, CA75269, CA75270, CA75271) MBAS BRL 0.05 0.49 0.58 16.8 104 104 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75270, CA75270)	Nitrate M	BRL	0.02	0.21	0.22	4.70	105	108	90 - 110	20
Ammonia as Nitrogen	Nitrite-iv	BRL	0.01	<0.010	<0.01	NC	105	106	90 - 110	20
Nitrogen Tot Kjeldahl BRL 0.10 1.56 1.52 2.60 104 105 85-115 20 Comment: TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS. QA/QC Batch 435703 (mg/L), QC Sample No: CA75080 (CA75265, CA75271) Total Suspended Solids BRL 5.0 8.0 8.0 NC 92.0 85-115 20 QA/QC Batch 435685 (mg/L), QC Sample No: CA75265 (CA75265, CA75265, CA75267, CA75268, CA75269, CA75270, CA75261) QA/QC Batch 435684 (mg/L), QC Sample No: CA75265 (CA75265, CA75265, CA75267, CA75268, CA75269, CA75270, CA75261) MBAS BRL 0.05 <0.05 0.07 NC 106 115 85-115 20 QA/QC Batch 435850 (mg/L), QC Sample No: CA75265 (CA75269, CA75270, CA75271) Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435850 (mg/L), QC Sample No: CA75270 (CA75269, CA75270, CA75271) MBAS BRL 0.05 0.49 0.58 16.8 104 104 85-115 20 QA/QC Batch 435850 (mg/L), QC Sample No: CA75271 (CA75269, CA75270, CA75271) MBAS BRL 0.05 0.49 0.58 16.8 104 104 85-115 20 QA/QC Batch 435850 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) COmment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 QA/QC Batch 435898 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 QA/QC Batch 435898 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270,	QA/QC Batch 435936 (mg/L), QC Samp	ole No:	CA74915	(CA752	70, CA	75271)			
Comment: TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS. QA/QC Batch 435703 (mg/L), QC Sample No: CA75080 (CA75265, CA75271) Total Suspended Solids BRL 5.0 8.0 8.0 NC 92.0 85-115 20 QA/QC Batch 435685 (mg/L), QC Sample No: CA75265 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75. Chlorine Residual BRL 0.02 <0.02 <0.02 NC 89.0 QA/QC Batch 435684 (mg/L), QC Sample No: CA75265 (CA75265 (CA75265, CA75267, CA75268, CA75268) MBAS BRL 0.05 <0.05 0.07 NC 106 115 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435850 (mg/L), QC Sample No: CA75270 (CA75269, CA75270, CA75271) MBAS BRL 0.05 0.49 0.58 16.8 104 104 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435898 (mg/L), QC Sample No: CA75326 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270) Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75268, CA75269, C	Ammonia as Nitrogen	BRL	0.05	0.27	0.25	7.70	106	101	90 - 110	20
QA/QC Batch 435703 (mg/L), QC Sample No: CA75080 (CA75265, CA75271) Total Suspended Solids BRL 5.0 8.0 8.0 NC 92.0 85 - 115 20 QA/QC Batch 435685 (mg/L), QC Sample No: CA75265 (CA75265, CA75265, CA75266, CA75267, CA75268, CA75269, CA75269, CA75270, CA75268) NC 89.0 QA/QC Batch 435684 (mg/L), QC Sample No: CA75265 (CA75265, CA75265, CA75266, CA75267, CA75268) NC 106 115 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. CA75269, CA75270, CA75271) CA75269, CA75271) MBAS BRL 0.05 0.49 0.58 16.8 104 104 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. CA75269, CA75270, CA75271) CA75269, CA75270, CA75271 104 85 - 115 20 CODE BRL 10 35 35 NC 102 106 85 - 115 20 COD.D. BRL 10 35 35 NC 102 106 85 - 115 20 COMMENT: Additional criteria matrix spike acceptance range is 75-125%. CA75265, CA75266, CA75267, CA75268, CA75269, CA75269, CA75270, CA75270	• •	BRL	0.10	1.56	1.52	2.60	104	105	85 - 115	20
Total Suspended Solids BRL 5.0 8.0 8.0 NC 92.0 85-115 20 QA/QC Batch 435685 (mg/L), QC Sample No: CA75265 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75260, CA75	TKN is reported as Organic Ni	trogen in the	Blank, L	CS, DUP	and MS.					
QA/QC Batch 435685 (mg/L), QC Sample No: CA75265 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75270, CA75261, CA75261, CA75263, CA75264, CA75263, CA75264, CA75264	QA/QC Batch 435703 (mg/L), QC Samp	ole No:	CA75080	(CA752	265, CA	75271)			
Chlorine Residual BRL 0.02 < 0.02 < 0.02 NC 89.0 QA/QC Batch 435684 (mg/L), QC Sample No: CA75265 (CA75265, CA75266, CA75267, CA75268) MBAS BRL 0.05 < 0.05 0.07 NC 106 115 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435850 (mg/L), QC Sample No: CA75270 (CA75269, CA75270, CA75271) MBAS BRL 0.05 0.49 0.58 16.8 104 104 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435898 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA752	Total Suspended Solids	BRL	5.0	8.0	8.0	NC	92.0		85 - 115	20
QA/QC Batch 435684 (mg/L), QC Sample No: CA75265 (CA75265, CA75266, CA75267, CA75268) MBAS BRL 0.05 <0.05 0.07 NC 106 115 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435850 (mg/L), QC Sample No: CA75270 (CA75269, CA75270, CA75271) MBAS BRL 0.05 0.49 0.58 16.8 104 104 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75270, CA75270, CA75270) C.O.D. BRL 10 35 35 NC 102 106 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75	QA/QC Batch 435685 (mg/L), QC Samp	ole No:	CA75265	(CA752	265, CA	75266, C	CA75267, CA75268, CA7526	9, CA75270, CA	A75271)
MBAS BRL 0.05 <0.05 0.07 NC 106 115 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435850 (mg/L), QC Sample No: CA75270 (CA75269, CA75270, CA75271) MBAS BRL 0.05 0.49 0.58 16.8 104 104 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA	Chlorine Residual	BRL	0.02	<0.02	<0.02	NC	89.0			,
MBAS BRL 0.05 <0.05 0.07 NC 106 115 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435850 (mg/L), QC Sample No: CA75270 (CA75269, CA75270, CA75271) MBAS BRL 0.05 0.49 0.58 16.8 104 104 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA752	QA/QC Batch 435684 (mg/L), QC Samp	ole No:	CA75265	(CA752	265, CA	75266, C	CA75267, CA75268)		
Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435850 (mg/L), QC Sample No: CA75270 (CA75269, CA75270, CA75271) MBAS BRL 0.05 0.49 0.58 16.8 104 104 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA								•	85 - 115	20
QA/QC Batch 435850 (mg/L), QC Sample No: CA75270 (CA75269, CA75270, CA75271) MBAS BRL 0.05 0.49 0.58 16.8 104 104 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75	Comment:									
MBAS BRL 0.05 0.49 0.58 16.8 104 104 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA7527	Additional criteria matrix spike	acceptance	range is	75-125%.						
Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75	QA/QC Batch 435850 (mg/L), QC Samp	ole No:	CA75270	(CA752	269, CA	75270, C	CA75271)		
Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75					•			,	85 - 115	20
QA/QC Batch 435828 (mg/L), QC Sample No: CA75321 (CA75268, CA75269, CA75270, CA75271) C.O.D. BRL 10 35 35 NC 102 106 85-115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75	Comment:									
C.O.D. BRL 10 35 35 NC 102 106 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75	Additional criteria matrix spike	acceptance	range is	75-125%.						
C.O.D. BRL 10 35 35 NC 102 106 85 - 115 20 Comment: Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75	QA/QC Batch 435828 (mg/L), QC Samı	ole No:	CA75321	(CA752	268. CA	75269. C	CA75270, CA75271)		
Additional criteria matrix spike acceptance range is 75-125%. QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75								· ·	85 - 115	20
QA/QC Batch 435698 (mg/L), QC Sample No: CA75362 (CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75	Comment:									
	Additional criteria matrix spike	acceptance	range is	75-125%.						
	QA/QC Batch 435698 (mg/L), QC Sami	ole No:	CA75362	(CA752	265. CA	75266 C	CA75267, CA75268, CA7526	9. CA75270. CA	175271)
30 110 20										20
	,				•	. =			55 110	

QA/QC Data

SDG I.D.: GCA75265

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits
Comment:													
Additional: MS acceptance ra	nge 75-125%	, o.											
QA/QC Batch 435707 (mg/l	.), QC Sam	ole No:	CA75385	(CA752	66, CA	75267,	CA7526	88, CA7	5269,	CA7527	0)		
Total Suspended Solids	BRL	5.0	<5.0	<5.0	NC	95.0					·	85 - 115	20
QA/QC Batch 435652 (mg/l	_), QC Sam	ole No:	CA75428	(CA752	71)								
Nitrate-N	BRL	0.02	0.03	0.03	NC	105			104			90 - 110	20
Nitrite as Nitrogen	BRL	0.01	0.04	<0.01	NC	105			100			90 - 110	20
QA/QC Batch 435761 (umh CA75271)	os/cm), QC	Sample	e No: CA7	76175 (C	A7526	5, CA75	5266, CA	A75267	, CA75	268, CA	75269	, CA752	70,
Conductivity	BRL	5.00	373	382	2.40	92.1						85 - 115	20
Comment:													
Additional criteria matrix spike	acceptance	range is	75-125%.										

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

July 02, 2018

Phyllis/Shiller, Laboratory Director

Sample Criteria Exceedances Report

GCA75265 - ATC-BRAN

씸

Result

Analysis Units

RL Criteria

Criteria

Criteria Phoenix Analyte

*** No Data to Display ***

Acode

SampNo

Monday, July 02, 2018

Criteria: None State: CT Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc. Client: ATC Group Services, LLC

Project Location: 209118 Project Number:

Laboratory Sample ID(s): CA75265-CA75271 Sampling Date(s): 6/21/2018

List RCP Methods Used (e.g., 8260, 8270, et cetera) None

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	☐ Yes ☐ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	☐ Yes ☑ No ☐ NA
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	☐ Yes 🗹 No
	b) Were these reporting limits met?	✓ Yes 🗆 No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	☐ Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	✓ Yes □ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and pena knowledge and belief and based upon my personal information contained in this analytical report, such	l inquiry of those responsible for providing the
Authorized Signature:	Position: Project Manager
Printed Name: Maryam Taylor	Date: Monday, July 02, 2018
Name of Laboratory Phoenix Environmental Labs, Ir	10.

This certification form is to be used for RCP methods only.

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 02, 2018

SDG I.D.: GCA75265

SDG Comments

Metals Analysis:

The client requested a site specific list of elements which is shorter than the RCP list.

Non RCP analyses are included with this report. The RCP narrative is provided at the request of the client.

Temperature above 6C:

The samples were received in a cooler with ice packs. The samples were delivered to the Laboratory within a short period of time after sample collection. Therefore no significant bias is suspected.

Wet Chemistry Analysis

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes,

Instrument:

BECKMAN DU720 #2 06/21/18-4 Michael Tran, Chemist 06/21/18

CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75271

BECKMAN DU720 06/21/18-1

CA75265, CA75266, CA75267, CA75268

The initial calibration met all criteria including a standard run at the reporting level. All method verification standards and blanks met criteria.

BECKMAN DU720 06/22/18-1 Katherine Brown, Chemist 06/22/18

CA75269, CA75270, CA75271

The initial calibration met all criteria including a standard run at the reporting level. All method verification standards and blanks met criteria.

HACH DR 5000 06/22/18-1

CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75271

The initial calibration met all criteria including a standard run at the reporting level. All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 435590 (CA74682)

CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75271

All LCS recoveries were within 85 - 115 with the following exceptions: None. Additional criteria matrix spike acceptance range is 75-125%.

Batch 435698 (CA75362)

CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75271

All LCS recoveries were within 85 - 115 with the following exceptions: None.

Additional: MS acceptance range 75-125%.

Additional criteria matrix spike acceptance range is 75-125%.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 02, 2018

SDG I.D.: GCA75265

Wet Chemistry Analysis

Batch 435703 (CA75080)

CA75265, CA75271

All LCS recoveries were within 85 - 115 with the following exceptions: None. Additional criteria matrix spike acceptance range is 75-125%.

Batch 435707 (CA75385)

CA75266, CA75267, CA75268, CA75269, CA75270

All LCS recoveries were within 85 - 115 with the following exceptions: None. Additional criteria matrix spike acceptance range is 75-125%.

Batch 435761 (CA76175)

CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75271

All LCS recoveries were within 85 - 115 with the following exceptions: None. Additional criteria matrix spike acceptance range is 75-125%.

Batch 435827 (CA73421)

CAZ5265, CA75266, CA75267

American ware within 85 - 115 with the following exceptions: None. Additional criteria matrix spike acceptance range is 75-125%.

Batch 435828 (CA75321)

CA75268, CA75269, CA75270, CA75271

All LCS recoveries were within 85 - 115 with the following exceptions: None. Additional criteria matrix spike acceptance range is 75-125%.

QC (Site Specific):

Batch 435684 (CA75265)

CA75265, CA75266, CA75267, CA75268

All LCS recoveries were within 85 - 115 with the following exceptions: None. All MS recoveries were within 75 - 125 with the following exceptions: None. Additional criteria matrix spike acceptance range is 75-125%.

Batch 435850 (CA75270)

CA75269, CA75270, CA75271

All LCS recoveries were within 85 - 115 with the following exceptions: None. All MS recoveries were within 75 - 125 with the following exceptions: None. Additional criteria matrix spike acceptance range is 75-125%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

BLUE 06/28/18 10:22

Emily Kolominskaya, Mike Arsenault, Chemist 06/28/18

CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75271

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

July 02, 2018

SDG I.D.: GCA75265

ICP Metals Narration

range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Site Specific):

Batch 436430 (CA75265)

CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75271

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: None.

LACHAT

Wisra AVQC performance criteria specimed in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

LACHAT 06/21/18-1

Mike Cottle, Chemist 06/21/18

CA75265, CA75266, CA75267, CA75268, CA75269, CA75270, CA75271

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 435650 (CA74718)

CA75265, CA75266, CA75267, CA75268, CA75269, CA75270

All LCS recoveries were within 90 - 110 with the following exceptions: None.

Batch 435652 (CA75428)

CA75271

All LCS recoveries were within 90 - 110 with the following exceptions: None.

NITROGEN

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

LACHAT 06/22/18-1

William H. McKernan, Chemist 06/22/18

CA75265, CA75266, CA75267, CA75268, CA75269

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

LACHAT 06/25/18-1

William H. McKernan, Chemist 06/25/18

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 02, 2018

SDG I.D.: GCA75265

NITROGEN

CA75270, CA75271

The initial calibration met all criteria including a standard run at the reporting level. All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 435619 (CA74673)

CA75265, CA75266, CA75267, CA75268, CA75269

All LCS recoveries were within 85 - 115 with the following exceptions: None. TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Batch 435936 (CA74915)

CA75270, CA75271

All LCS recoveries were within 85 - 115 with the following exceptions: None. TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Temperature Narration

The samples were received at 9.8C with cooling initiated. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

													Coolant	Cooler:	ICE No
				Ü	Y Y	P	Sno		CHAIN OF CUSTONY RECORD	g Q				ე .8' 6ძw⊖⊥	C Pg of
PHOE	DENIX W			587 East Em	Middle	Turnpik 3phoen	e, P.O. ixlabs.c	Bo ,	587 East Middle Turnpike, P.O. Box 170, Manchester, CT 06040 Email: into@phoenixlabs.cort. Fax (860) 645-0823	ST 06040 823		Data Delivery:	K:	4	
Environmental Laboratories, Inc.	Laboratories,	Inc.			200	190 H	Sac N	2	1 043-0170		-1	Email: 1	W 28 W	W	
Customer: A1C	3000	Scrvices	۱,۸		_	Project:	ا	٨	209118			q.	Project P.O:	ö	
	Business	Park	7			Report to:	9	3	wke Whit	hitchouse	,3e				
•	1	190	50490			Invoice to:	:: ::	A	ر.						This section MUST
						Phone #:	#	८%व्य	18 Hd8-4481	184				<u>م</u>	be completed with Bottle Quantities.
		AND THE PERSON NAMED OF TH			_,	Fax#:	•			3					-
	Client Sample - Information - Identification	Identifica	tion		₹ (Analysis			CA STORY	(2)	1			(g) (g)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Matrix Code: Short Matrix Code: DW=Drinking Water GW=Ground Water SW>Surface Water WW=Waste Water	Scound Water SWS	Dyre Wate	Date:	e Water	r	ednes	/,	24		307	` '	Olegia:	S S S S S S S S S S S S S S S S S S S		NOO N
RW=Raw Water SE=Sediment SL=Sludge OIL=Oil B=Bulk L=Liquid	iment SL=Sludge S=S	oil SD=So	lid W=Wip	ψ.		X	3/3	34		XXX)	`		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Work The Control	ite de la constitución de la con
PHOENIX USE CONLY SAMPLE #	· Sample cation	Sample Matrix	Date Sampled	Time	<u>Z</u>		5 X	\\$\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100 mg		1/35	3/403 40,50	SOUNT OF TO		100 00 00 00 00 00 00 00 00 00 00 00 00
O			1	ا ١٥	X	X	Х	Ŷ X	× ×			_			
15006 31		>>\$		2310	X	X	χ	X	×			_	_	-	
	2	51		ಡಿತಿ	X	X	X	^	××			_	_		
25		Sec		0730	X	X	X	7	×				-	_	-
75269 316	~	35	4	034	X	X	K	X	×			-	_	=	
15270 3VII		35	->	0352	X	X X	X	×		\dashv		-		+	
15271 32	145	ફ	477.0	547	X	X	X	X	X			1	1	1	-
						_									
						-									
								++							
Relinanished by 4	Accepted by:				Date:	╣.		-	- - - -	<u> </u>	CT	¥			Data Format
TOR .	KDella	Bell	7		10/9	9//18		4:38	TTT	ו ואבו ו	RCP Cert GW Protection	1	MCP Certification		PDF
							$\perp \downarrow$	***************************************	other	<u>u U</u>	SW Protection GA Mobility	GW-3	7.2 7.3	<u></u>	☐ GIS/Key ☐ EQuIS
omments, Special Requirements or Regulations:	rements or Regulations	ij			I L	urnaround:		~		<u> </u>	GB Mobility			- wii h.	Data Package
					ם ב	2 Days*		No. 1 2		<u></u>	☐ Residential DEC ☐ I/C DEC		S-3 MWRA eSMART		Full Data Package*
					ואונ	Standard				_	☐ Other	Other	Je.		Other
						Other JRCHARG	U Other surcharge Applies	Es	State wh	ere sam	State where samples were collected:	llected:		1	* SURCHARGE APPLIES
								127						1	

Friday, July 06, 2018

Attn: Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Project ID: 204118 NEW HAVEN SW Sample ID#s: CA80079 - CA80085

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

July 06, 2018

FOR:

Attn: Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

P.O.#:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

Custody Information

Collected by: Received by:

Analyzed by:

CP

Date 06/28/18 Time 5:45

06/28/18

9:09

see "By" below

<u>.aboratory Data</u>

SDG ID: GCA80079

Phoenix ID: CA80079

Project ID:

204118 NEW HAVEN SW

Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Boron	< 0.05	0.05	mg/L	1	07/02/18	EK	SW6010C
Hardness (CaCO3)	43.2	0.1	mg/L	1	07/03/18		E200.7
- Esonersone Coll	: 3450	1.10	MPN/100 mis	10 - 550 -	06/28/18 10:00	KDB/KDE	3 SM9223B-04.
Enterococci Bacteria	12000	10	MPN/100 mls	10	06/28/18 10:15	KDB/KDE	Enterolert
Fecal Coliforms MPN	4110	10	MPN/100 mls	1	06/28/18 10:30	KDB/KDE	Colilert-18
Total Coliforms	>242000	100	MPN/100 mls	100	06/28/18 10:00	KDB/KDE	SW9223B-06
Chlorine Residual	< 0.02	0.02	mg/L	1	06/28/18 18:59	0	SM4500CI-G-00
C.O.D.	204	10	mg/L	1	06/29/18	KMH	SM5220D-11
Conductivity	112	5.00	umhos/cm	1	06/29/18	RWR/KD	BSM2510B-11
MBAS	0.67	0.10	mg/L	2	06/29/18 00:25	X	SM5540 C-11
Ammonia as Nitrogen	0.42	0.10	mg/L	2	07/03/18	WHM	E350.1
Nitrite-N	0.012	0.010	mg/L	1	06/28/18 17:51	MC	E353.2
Nitrate-N	0.15	0.02	mg/L	1	06/28/18 17:51	MC	E353.2
Oil and Grease by EPA 1664A	2.7	1.4	mg/L	1	06/29/18	MSF	E1664A
Salinity	< 0.5	0.5	ppt	1	06/28/18	RWR	SM2520B-10
Nitrogen Tot Kjeldahl	3.32	0.20	mg/L	2	07/03/18	WHM	E351.1
Phosphorus, as P	0.545	0.010	mg/L	1	07/02/18	MI	SM4500PE-11
Total Suspended Solids	200	5.0	mg/L	1	06/28/18	DA/KH	SM2540D-11
Total Metals Digestion	Completed				06/29/18	AG	

Project ID: 204118 NEW HAVEN SW

Client ID: 0119

Phoenix I.D.: CA80079

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 06, 2018

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 06, 2018

FOR:

Attn: Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

P.O.#:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

Laboratory Data

Custody Information

CP

see "By" below

Collected by:

Received by:

Analyzed by:

SDG ID: GCA80079

Time

5:49

9:09

Date

06/28/18

06/28/18

Phoenix ID: CA80080

Project ID:

204118 NEW HAVEN SW

Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Boron	< 0.05	0.05	mg/L	1	07/02/18	EK	SW6010C
Hardness (CaCO3)	4.5	0.1	mg/L	1 .	07/03/18		E200.7
Escherichia Coli	9800	60	MPN/100 mis	10 -50%	- = 06/28/18 10:00	KDB/KDI	5 SM9223B-04
Enterococci Bacteria	27600	100	MPN/100 mls	100	06/28/18 10:15	KDB/KDI	3 Enterolert
Fecal Coliforms MPN	7270	10	MPN/100 mls	1	06/28/18 10:30	KDB/KDI	3 Colilert-18
Total Coliforms	>242000	100	MPN/100 mls	100	06/28/18 10:00	KDB/KDI	B SW9223B-06
Chlorine Residual	< 0.02	0.02	mg/L	1	06/28/18 19:00	0	SM4500CI-G-00
C.O.D.	90	10	mg/L	1	06/29/18	KMH	SM5220D-11
Conductivity	28	5.00	umhos/cm	1	06/29/18	RWR/KD	BSM2510B-11
MBAS	0.23	0.10	mg/L	2	06/29/18 00:25	×	SM5540 C-11
Ammonia as Nitrogen	0.18	0.05	mg/L	1	07/03/18	WHM	E350.1
Nitrite-N	< 0.010	0.010	mg/L	1	06/28/18 17:52	MC	E353.2
Nitrate-N	0.25	0.02	mg/L	1	06/28/18 17:52	MC	E353.2
Oil and Grease by EPA 1664A	1.6	1.4	mg/L	1	06/29/18	MSF	E1664A
Salinity	< 0.5	0.5	ppt	1	06/28/18	RWR	SM2520B-10
Nitrogen Tot Kjeldahl	1.48	0.10	mg/L	1	07/03/18	WHM	E351.1
Phosphorus, as P	0.295	0.010	mg/L	1	07/02/18	MI	SM4500PE-11
Total Suspended Solids	280	5.0	mg/L	1	06/28/18	DA/KH	SM2540D-11
Total Metals Digestion	Completed				06/29/18	AG	

Project ID: 204118 NEW HAVEN SW

A section of the sect

Client ID: 9268

Phoenix I.D.: CA80080

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 06, 2018

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 06, 2018

FOR:

Attn: Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

Received by: CP

Custody Information

Collected by:

Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCA80079

<u>Time</u>

5:58

9:09

Phoenix ID: CA80081

<u>Date</u>

06/28/18

06/28/18

Project ID:

204118 NEW HAVEN SW

Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Boron	< 0.05	0.05	mg/L	1	07/02/18	EK	SW6010C
Hardness (CaCO3)	15.4	0.1	mg/L	1	07/03/18		E200.7
Eschenobia Coli	L = = 15500 -	34 0	MPN/100 mls	1000-	06/28/18 10:00	KDB/KD8	SM9223B-04
Enterococci Bacteria	29100	100	MPN/100 mls	100	06/28/18 10:15	KDB/KD	3 Enterolert
Fecal Coliforms MPN	5170	10	MPN/100 mls	1	06/28/18 10:30	KDB/KDI	3 Colilert-18
Total Coliforms	>242000	100	MPN/100 mls	100	06/28/18 10:00	KDB/KDI	3 SW9223B-06
Chlorine Residual	< 0.02	0.02	mg/L	1	06/28/18 19:01	0	SM4500CI-G-00
C.O.D.	124	10	mg/L	1	06/29/18	KMH	SM5220D-11
Conductivity	14	5.00	umhos/cm	1	06/29/18	RWR/KD	BSM2510B-11
MBAS	0.11	0.10	mg/L	2	06/29/18 00:26	X	SM5540 C-11
Ammonia as Nitrogen	0.28	0.10	mg/L	2	07/03/18	WHM	E350.1
Nitrite-N	< 0.010	0.010	mg/L	1	06/28/18 17:53	MC	E353.2
Nitrate-N	0.12	0.02	mg/L	1	06/28/18 17:53	MC	E353.2
Oil and Grease by EPA 1664A	3.5	1.4	mg/L	1	06/29/18	MSF	E1664A
Salinity	< 0.5	0.5	ppt	1	06/28/18	RWR	SM2520B-10
Nitrogen Tot Kjeldahl	1.58	0.20	mg/L	2	07/03/18	WHM	E351.1
Phosphorus, as P	0.476	0.010	mg/L	1	07/02/18	МІ	SM4500PE-11
Total Suspended Solids	140	5.0	mg/L	1	06/28/18	DA/KH	SM2540D-11
Total Metals Digestion	Completed				06/29/18	AG	

Project ID: 204118 NEW HAVEN SW

Client ID: 8843

Phoenix I.D.: CA80081

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 06, 2018

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 06, 2018

FOR:

Attn: Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

8818

P.O.#:

Custody Information

Collected by: Received by:

CP

06/28/18

<u>Time</u> 6:06

<u>Date</u>

06/28/18

9:09

Analyzed by: see "By" below

Laboratory Data

SDG ID: GCA80079

Phoenix ID: CA80082

Project ID:

204118 NEW HAVEN SW

Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Boron	< 0.05	0.05	mg/L	1	06/29/18	MA	SW6010C
Hardness (CaCO3)	4.9	0.1	mg/L	1	07/02/18		E200.7
Escherichts Coli	24200	10.	MPN/100 mls	1047	06/28/18 10:00	KD8/KD	: SMS223B-04
Enterococci Bacteria	61300	100	MPN/100 mls	100	06/28/18 10:15	KDB/KD	3 Enterolert
Fecal Coliforms MPN	17300	10	MPN/100 mls	1	06/28/18 10:30	KDB/KD	3 Colilert-18
Total Coliforms	>242000	100	MPN/100 mls	100	06/28/18 10:00	KDB/KDI	3 SW9223B-06
Chlorine Residual	< 0.02	0.02	mg/L	1	06/28/18 19:02	0	SM4500CI-G-00
C.O.D.	40	10	mg/L	1	06/29/18	КМН	SM5220D-11
Conductivity	16	5.00	umhos/cm	1	06/29/18	RWR/KD	BSM2510B-11
MBAS	< 0.10	0.10	mg/L	2	06/30/18 05:23	TH	SM5540 C-11
Ammonia as Nitrogen	0.08	0.05	mg/L	1	07/03/18	WHM	E350.1
Nitrite-N	< 0.010	0.010	mg/L	1	06/28/18 18:04	MC	E353.2
Nitrate-N	0.09	0.02	mg/L	1	06/28/18 18:04	MC	E353.2
Oil and Grease by EPA 1664A	< 1.4	1.4	mg/L	1	06/29/18	MSF	E1664A
Salinity	< 0.5	0.5	ppt	1	06/28/18	RWR	SM2520B-10
Nitrogen Tot Kjeldahl	1.16	0.10	mg/L	1	07/03/18	WHM	E351.1
Phosphorus, as P	0.231	0.010	mg/L	1	07/02/18	MI	SM4500PE-11
Total Suspended Solids	48	5.0	mg/L	1	06/28/18	DA/KH	SM2540D-11
Total Metals Digestion	Completed				06/28/18	AG	

Client ID: 8818

Phoenix I.D.: CA80082

RL/

Parameter Result

t PQL

Units

Dilution

Date/Time

By

Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 06, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 06, 2018

FOR:

Attn: Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

P.O.#:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

Custody Information

Collected by:

Received by:

Laboratory Data

CP

<u>Date</u> 06/28/18 <u>Time</u> 6:14

06/28/18

9:09

Analyzed by:

see "By" below

SDG ID: GCA80079 Phoenix ID: CA80083

Project ID:

204118 NEW HAVEN SW

Client ID:

8810

Parameter	Result	RL/ Result PQL		Dilution	Date/Time	Ву	Reference
Boron	< 0.05	0.05	mg/L	1	06/29/18	MA	SW6010C
Hardness (CaCO3)	4.4	0.1	mg/L	1 .	07/02/18		E200.7
Escherichia Coli	15500	10	MPN/100 mls	10.5	06/28/18 10:00	KDB/KD5	SM92235-04
Enterococci Bacteria	19900	10	MPN/100 mls	10	06/28/18 10:15	KDB/KD8	3 Enterolert
Fecal Coliforms MPN	11200	10	MPN/100 mls	1	06/28/18 10:30	KDB/KD8	3 Colilert-18
Total Coliforms	>242000	100	MPN/100 mls	100	06/28/18 10:00	KDB/KD	3 SW9223B-06
Chlorine Residual	0.03	0.02	mg/L	1	06/28/18 19:03	0	SM4500CI-G-00
C.O.D.	25	10	mg/L	1	06/29/18	KMH	SM5220D-11
Conductivity	16	5.00	umhos/cm	1	06/29/18	RWR/KD	BSM2510B-11
MBAS	< 0.10	0.10	mg/L	2	06/30/18 05:23	TH	SM5540 C-11
Ammonia as Nitrogen	0.20	0.05	mg/L	1	07/03/18	WHM	E350.1
Nitrite-N	< 0.010	0.010	mg/L	1	06/28/18 18:05	MC	E353.2
Nitrate-N	0.14	0.02	mg/L	1	06/28/18 18:05	MC	E353.2
Oil and Grease by EPA 1664A	< 1.4	1.4	mg/L	1	06/29/18	MSF	E1664A
Salinity	< 0.5	0.5	ppt	1	06/28/18	RWR	SM2520B-10
Nitrogen Tot Kjeldahl	0.91	0.10	mg/L	1	07/03/18	WHM	E351.1
Phosphorus, as P	0.249	0.010	mg/L	1	07/02/18	MI	SM4500PE-11
Total Suspended Solids	30	5.0	mg/L	1	06/28/18	DA/KH	SM2540D-11
Total Metals Digestion	Completed				06/28/18	AG	

Client ID: 8810

Phoenix I.D.: CA80083

....

RL/ PQL

Units Dilution

Date/Time

By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Parameter

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

Result

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 06, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 06, 2018

FOR:

Attn: Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

P.O.#:

STORM WATER

Location Code:

ATC-BRAN

Rush Request:

Standard

Laboratory Data

CP

see "By" below

Custody Information

Collected by:

Received by:

Analyzed by:

SDG ID: GCA80079

<u>Time</u>

6:21

9:09

Phoenix ID: CA80084

Date

06/28/18

06/28/18

Project ID:

204118 NEW HAVEN SW

Client ID:

8803

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Boron	< 0.05	0.05	mg/L	1	06/29/18	MA	SW6010C
Hardness (CaCO3)	3.0	0.1	mg/L	1	07/02/18		E200.7
Eschericia a Coli	36500	100	MPN/100 mls	100	06/28/18 10:00	KDB/KD6	3 SM92238-04
Enterococci Bacteria	19900	10	MPN/100 mls	10	06/28/18 10:15	KDB/KDE	3 Enterolert
Fecal Coliforms MPN	19900	10	MPN/100 mls	1	06/28/18 10:30	KDB/KDI	3 Colilert-18
Total Coliforms	>242000	100	MPN/100 mls	100	06/28/18 10:00	KDB/KD	3 SW9223B-06
Chlorine Residual	< 0.02	0.02	mg/L	1	06/28/18 19:04	0	SM4500CI-G-00
C.O.D.	38	10	mg/L	1	06/29/18	KMH	SM5220D-11
Conductivity	20	5.00	umhos/cm	1	06/29/18	RWR/KD	BSM2510B-11
MBAS	0.11	0.10	mg/L	2	06/30/18 05:23	TH	SM5540 C-11
Ammonia as Nitrogen	0.09	0.05	mg/L	1	07/03/18	WHM	E350.1
Nitrite-N	< 0.010	0.010	mg/L	1	06/28/18 18:06	MC	E353.2
Nitrate-N	0.14	0.02	mg/L	1	06/28/18 18:06	MC	E353.2
Oil and Grease by EPA 1664A	1.5	1.4	mg/L	1	06/29/18	MSF	E1664A
Salinity	< 0.5	0.5	ppt	1	06/28/18	RWR	SM2520B-10
Nitrogen Tot Kjeldahl	0.60	0.10	mg/L	1	07/03/18	WHM	E351.1
Phosphorus, as P	0.177	0.010	mg/L	1	07/02/18	MI	SM4500PE-11
Total Suspended Solids	24	5.0	mg/L	1	06/28/18	DA/KH	SM2540D-11
Total Metals Digestion	Completed				06/28/18	AG	

Client ID: 8803

Phoenix I.D.: CA80084

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 06, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 06, 2018

FOR:

Attn: Luke Whitehouse ATC Group Services, LLC 33 Business Park Dr. Branford, CT 06405

Sample Information

Matrix:

STORM WATER

Location Code:

ATC-BRAN

Rush Request: Standard

8494

P.O.#:

Custody Information

Collected by:

Analyzed by:

Received by:

CP

see "By" below

Date 06/28/18 Time 6:27

06/28/18

9:09

aboratory Data

SDG ID: GCA80079 Phoenix ID: CA80085

Project ID:

204118 NEW HAVEN SW

Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Boron	< 0.05	0.05	mg/L	1	06/29/18	MA	SW6010C
Hardness (CaCO3)	2.7	0.1	mg/L	1 .	07/02/18		E200.7
Eschendria Coli	2910	10	MPN/100 mls	180	06/28/18 10:00	KDB/KDI	3 SM9223B-04
Enterococci Bacteria	24200	10	MPN/100 mls	10	06/28/18 10:15	KDB/KDI	3 Enterolert
Fecal Coliforms MPN	1350	10	MPN/100 mls	1	06/28/18 10:30	KDB/KDI	3 Colilert-18
Total Coliforms	>242000	100	MPN/100 mls	100	06/28/18 10:00	KDB/KDI	3 SW9223B-06
Chlorine Residual	< 0.02	0.02	mg/L	1	06/28/18 19:04	0	SM4500CI-G-00
C.O.D.	31	10	mg/L	1	06/29/18	KMH	SM5220D-11
Conductivity	25	5.00	umhos/cm	1	06/29/18	RWR/KD	BSM2510B-11
MBAS	0.11	0.10	mg/L	2	06/30/18 05:24	TH	SM5540 C-11
Ammonia as Nitrogen	0.46	0.05	mg/L	1	07/03/18	WHM	E350.1
Nitrite-N	< 0.010	0.010	mg/L	1	06/28/18 18:07	MC	E353.2
Nitrate-N	0.23	0.02	mg/L	1	06/28/18 18:07	MC	E353.2
Oil and Grease by EPA 1664A	< 1.4	1.4	mg/L	1	06/29/18	MSF	E1664A
Salinity	< 0.5	0.5	ppt	1	06/28/18	RWR	SM2520B-10
Nitrogen Tot Kjeldahl	1.45	0.10	mg/L	1	07/03/18	WHM	E351.1
Phosphorus, as P	0.254	0.010	mg/L	1	07/02/18	MI	SM4500PE-11
Total Suspended Solids	39	5.0	mg/L	1	06/28/18	DA/KH	SM2540D-11
Total Metals Digestion	Completed				06/28/18	AG	

Client ID: 8494

Phoenix I.D.: CA80085

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The LAS standard used for the MBAS analysis has a molecular weight of 342 g/mol.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 06, 2018

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

July 06, 2018

QA/QC Data

SDG I.D.: GCA80079

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 436684 (mg/L), QC Sample No: CA80082 (CA80082, CA80083, CA80084, CA80085)														
ICP Metals - Aqueous														
Boron	BRL	0.05	<0.05	<0.05	NC	111	97.9 75 - 125 2					20		
QA/QC Batch 436853 (mg/L), (QA/QC Batch 436853 (mg/L), QC Sample No: CA80986 (CA80079, CA80080, CA80081)													
ICP Metals - Aqueous														
Boron	BRL	0.05	<0.05	<0.05	NC	96.4			98.6			75 - 125	20	

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

July 06, 2018

QA/QC Data

SDG I.D.: GCA80079

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD		MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 437098 (mg/L), Q Phosphorus, as P Comment:	BRL	0.01	10.7	(CA800 10.1	79, CA 5.80	80080, 105	CA8008	81, CA	80082, 99.7	CA80083	, CA8	80084, C 85 - 115	20 20
Additional criteria matrix spike acc													
QA/QC Batch 436704 (mg/L), C Nitrate-N Nitrite-N	C Samp BRL BRL	ole No: 0.02 0.01	CA79848 <0.02 <0.010	(CA800 <0.02 <0.01	79, CA NC NC	80080, 104 106	CA8008	31)	102 101			90 - 110 90 - 110	
QA/QC Batch 436776 (mg/L), Coil and Grease by EPA 1664A Comment:)79, CA	80080, 98.0	CA8008 101	31, C <i>A</i> 3.0		CA80083	3, CA8	800 84 , 0 85 - 115	
Additional: MS acceptance range													
QA/QC Batch 436607 (mg/L), C Total Suspended Solids	QC Sam BRL	ple No: 5.0	CA80072 <5.0	CA800 <5.0)79, CA NC	,80080 91.0	, CA800	81, C/	480082,	CA80083	3, CA8	80084, 0 85 - 118	
QA/QC Batch 436788 (mg/L), C C.O.D	QC Sam BRL	ple No: 10	CA80079 204) (CA800 198	079, CA 3.00	.80080, 98 6		81, C	480082, 99.0	CA80083	3, CA8	80084, (85 - 118	CA80085 5 20
Additional criteria matrix spike ac													
QA/QC Batch 437045 (mg/L), (QC Sam	ple No	: CA80083				, CA800	81, C			3, CA		
Ammonia as Nitrogen Nitrogen Tot Kjeldahl Comment:	BRL BRL	0.05 0.10		0.22 0.99	NC 8.40	101 99.3			86.8 99.6			90 - 110 85 - 119	-
TKN is reported as Organic Nitro	gen in th	e Blank,	LCS, DUP	and MS.									
QA/QC Batch 436693 (mg/L),						08008	, CA800	81, C	A80082	, CA8008	3, CA	80084,	CA80085
Chlorine Residual	BRL	0.02		<0.02		102							
QA/QC Batch 436771 (umhos/ CA80085)	cm), Q0	Samp	le No: CA	80255 (CA8007	79, CA8	30080, C	008A	81, CA8	80082, CA	8008	3, CA80	084,
Conductivity Comment:	BRL	5.00	50	50.6	1.20	96.3	3					85 - 11	5 20
Additional criteria matrix spike ad	ceptance	e range	is 75-125%	·.									
QA/QC Batch 436741 (mg/L),	QC San	nple No	: CA8033	1 (CA80	079, C	480080), CA800)81)					
MBAS Comment:	BRL	0.05	5 0.08	0.06	NC	89.5			104	1		85 - 11	5 20
Additional criteria matrix spike a													
QA/QC Batch 436705 (mg/L),	QC Sar)84, C				00.4	
Nitrate-N	BRL			0.41	0	105			10			90 - 11	
Nitrite as Nitrogen	BRL			<0.01		106			10			90 - 1	10 20
QA/QC Batch 436913 (mg/L), MBAS Comment:	QC Sar BRL			1 (CA80 0.19				084, C	A80085 91.			85 - 1	15 20
Additional criteria matrix spike a	cceptano	e range	is 75-125%	6.									

QA/QC Data

SDG I.D.: GCA80079

RPD Sample Result Dup RPD Blk Dup LCS LCSD LCS MS MSD MS Rec Blank RL Result % % RPD % % RPD Limits Limits Parameter

m = This parameter is outside laboratory MS/MSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

July 06, 2018

Sample Criteria Exceedances Report

GCA80079 - ATC-BRAN

Criteria

Phoenix Analyte

Result

씸

RL Criteria

Analysis Units

SampNo Acode

Friday, July 06, 2018 Criteria: None State: CT Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc. Client: ATC Associates

Project Location: 204118 NEW HAVEN SW Project Number:

Laboratory Sample ID(s): CA80079-CA80085 Sampling Date(s): 6/28/2018

List RCP Methods Used (e.g., 8260, 8270, et cetera) 6010

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	☐ Yes ☐ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Section: NITROGEN.	☐ Yes ☑ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	☐ Yes 🗹 No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	☐ Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	✓ Yes □ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. Authorized Signature: Printed Name: Rashmi Makol Page: Friday, July 06, 2018												
Authorized Signature:	Roshui wakal	Position:	Project Manager									
Printed Name: Rashm	i Makol	Date:	Friday, July 06, 2018									
Name of Laboratory P	hoenix Environmental Labs, Inc.											

This certification form is to be used for RCP methods only.

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 06, 2018

SDG I.D.: GCA80079

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only Boron is reported as requested on the chain of custody.

Wet Chemistry Analysis

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

BECKMAN DU720 #2 07/02/18-5 Michael Tran, Chemist 07/02/18

CA80079, CA80080, CA80081, CA80082, CA80083, CA80084, CA80085

BECKMAN DU720 06/29/18-1

Katherine Brown, Chemist 06/29/18

CA80079, CA80080, CA80081

The initial calibration met all criteria including a standard run at the reporting level. All methods werification standards and blanks met criteria.

BECKMAN DU720 06/30/18-1

Tina Hall, Chemist 06/30/18

CA80082, CA80083, CA80084, CA80085

The initial calibration met all criteria including a standard run at the reporting level. All method verification standards and blanks met criteria.

HACH DR 5000 06/29/18-2

Kristina Hagelin, Chemist 06/29/18

CA80079, CA80080, CA80081, CA80082, CA80083, CA80084, CA80085

The initial calibration met all criteria including a standard run at the reporting level. All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 436607 (CA80072)

CA80079, CA80080, CA80081, CA80082, CA80083, CA80084, CA80085

All LCS recoveries were within 85 - 115 with the following exceptions: None. Additional criteria matrix spike acceptance range is 75-125%.

Batch 436741 (CA80331)

CA80079, CA80080, CA80081

All LCS recoveries were within 85 - 115 with the following exceptions: None. Additional criteria matrix spike acceptance range is 75-125%.

Batch 436771 (CA80255)

CA80079, CA80080, CA80081, CA80082, CA80083, CA80084, CA80085

All LCS recoveries were within 85 - 115 with the following exceptions: None. Additional criteria matrix spike acceptance range is 75-125%.

Batch 436776 (CA79895)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 06, 2018

SDG I.D.: GCA80079

Wet Chemistry Analysis

CA80079, CA80080, CA80081, CA80082, CA80083, CA80084, CA80085

All LCS recoveries were within 85 - 115 with the following exceptions: None.

All LCSD recoveries were within 85 - 115 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Additional: MS acceptance range 75-125%.

Additional criteria matrix spike acceptance range is 75-125%.

Batch 436913 (CA81471)

CA80082, CA80083, CA80084, CA80085

All LCS recoveries were within 85 - 115 with the following exceptions: None.

Additional criteria matrix spike acceptance range is 75-125%.

Batch 437098 (CA79135)

CA80079, CA80080, CA80081, CA80082, CA80083, CA80084, CA80085

All LCS recoveries were within 85 - 115 with the following exceptions: None.

Additional criteria matrix spike acceptance range is 75-125%.

QC (Site 3pecific):

Batch 436788 (CA80079)

CA80079, CA80080, CA80081, CA80082, CA80083, CA80084, CA80085

All LCS recoveries were within 85 - 115 with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: None.

Additional criteria matrix spike acceptance range is 75-125%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

BLUE 06/29/18 10:54

Mike Arsenault, Chemist 06/29/18

CA80082, CA80083, CA80084, CA80085

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

BLUE 07/02/18 06:24

Emily Kolominskaya, Chemist 07/02/18

CA80079, CA80080, CA80081

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

July 06, 2018

SDG I.D.: GCA80079

ICP Metals Narration

by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None,

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 436853 (CA80986)

CA80079, CA80080, CA80081

All LCS recoveries were within 75 - 125 with the following exceptions: None.

QC (Site Specific):

Batch 436684 (CA80082)

CA80082, CA80083, CA80084, CA80085

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All MS responsive were within 75 - 125 with the following exceptions: None.

LACHAT

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

LACHAT 06/28/18-1

Mike Cottle, Chemist 06/28/18

CA80079, CA80080, CA80081, CA80082, CA80083, CA80084, CA80085

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 436704 (CA79848)

CA80079, CA80080, CA80081

All LCS recoveries were within 90 - 110 with the following exceptions: None.

Batch 436705 (CA80430)

CA80082, CA80083, CA80084, CA80085

All LCS recoveries were within 90 - 110 with the following exceptions: None.

NITROGEN

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 437045 (Samples: CA80079, CA80080, CA80081, CA80082, CA80083, CA80084, CA80085): -----

The LCS/LCSD recovery is acceptable. One or more analytes in the site specific matrix spike recovery is below the method criteria, therefore a low bias is likely. (Ammonia as Nitrogen)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 06, 2018

SDG I.D.: GCA80079

NITROGEN

Instrument:

LACHAT 07/03/18-1

William H. McKernan, Chemist 07/03/18

CA80079, CA80080, CA80081, CA80082, CA80083, CA80084, CA80085

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Site Specific):

Batch 437045 (CA80083)

CA80079, CA80080, CA80081, CA80082, CA80083, CA80084, CA80085

All LCS recoveries were within 85 - 115 with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: Ammonia as Nitrogen(86.8%)

A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria.

TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Temperature Narration

The samples were received at 6.0C with cooling initiated. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

			1 M M State and Association Commission						***************************************					 		
Cooler: Yes No Coolant: IPK ICE X No	Temb () c Pg of	Data Delivery: Fax # Fax # Fax & Cohile house & Chegs . com	Sto Project P.O:	This section MUST be completed with Bottle Quantities.	1400 1400; 2000 1400; 1400	1000 1000 1000 1000 1000 1000 1000 100								5 5	DEC S-1 Ba C C C C C C C	collected: CT · SURCHARGE APPLIES
	CHAIN OF CUSTODY RECORD	East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Project: 204118 New Hoven St. Report to: 1.1 Fe Lot 1 Felans	1791	Analysis Request	SOUTH STATE OF THE	ON STATES OF STATES OF THE STA	XXXXXX	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	XXXXXX	X 7 X X X X X X X X X X X X X X X X X X	<	Exposure		State where samples were collected: State where samples were collected:
		PHOENIX END 587 East Environmental Laboratories, Inc.	ATC Group Sucs.	Bransold Or Octos	Client Sample - Information - Identification Date: 6/28/18	Marin Code. DW=Drinking Water GW=Ground Water SW=9urface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid	Customer Sample Bate Time Identification Matrix Sampled Sampled	81-82-9 ms	4.68 5.44.			\$803 6:31 m	#W/r-0)	Accepted by: Trolww	ements or Regulations:	
		PHOE Environmental	Customer: #1	1	Sampler's Signature	DW=Drinking Water GW= RW=Raw Water SE=Sedir OIL=Oil B=Bulk L=Liquid	SE E#		08008	+		% h8008		LU CUMB	Comments, Special Requirements or Regulations.	