Draft MS4 Stormwater Annual Report 2022 Available for public comments. Please address all comments to:- Giovanni Zinn City Engineer 200 Orange Street, Room 503 New Haven CT 06510 by March 31st, 2023 # MS4 General Permit City of New Haven 2022 Annual Report Existing MS4 Permittee Permit Number GSM 000030 [January 1, 2022 – December 31, 2022] This report documents the City of New Haven's efforts to comply with the conditions of the MS4 General Permit to the maximum extent practicable (MEP) from January 1, 2021 to December 31, 2021. Part I: Summary of Minimum Control Measure Activities ## 1. Public Education and Outreach (Section 6 (a)(1) / page 19) | ВМР | Status | Activities in current reporting period | Measurable
goal | Department / Person Responsible | Due | Date completed or
projected completion
date | Additional details | |---|---------|--|--|---------------------------------|---------|---|---| | 1-1 Implement public education and outreach | Ongoing | - Signage at green infrastructure (GI) installations -West River Watershed Coalition river walks -Promotion of GI and sustainable land use practices in Climate and Sustainability Framework and in 2022 Sustainable CT certificationActive watershed groups: Mill River Watershed Association and West River Watershed Coalition. | Link to website, # signs installed, # of people reached, Link to Framework, # storm drain art installations. | Engineering | Ongoing | Continuing | Link to New Haven Climate and Sustainability Framework http://newhavenct.gov/gov/ depts/engineering/sustainability.htm storm drain art link https://lotsoffish.info/storm-drain-art West River Watershed Coalition https://www.westriverwatershed.org/ Mill River Watershed Coalition https://millriverofsouthcentralct.org/ | | 1-2 Address | Ongoing | Research on effectiveness | # of litter | Engineering | Ongoing | Continuing | |----------------------------|---------|--|----------------|-------------|---------|------------| | education/ | | of infrastructure to capture | trap | 1 1 | | | | outreach for pollutants of | | litter in collaboration with
Yale School of the | installations, | | | | | concern* | | Environment. | | | | | | | | | | | | | ## 1.2 Describe any Public Education and Outreach activities planned for the next year, if applicable. - Continue support of watershed groups including the Mill River Watershed Association and the West River Watershed Coalition. - Continue research partnership with non-profit and university on effectiveness of litter prevention methods. #### 1.3 Details of activities implemented to educate the community on stormwater | Program Element/Activity | Audience (and number of people reached) | Topic(s) covered | Pollutant of Concern addressed (if applicable) | Responsible dept. or partner org. | |--|--|--|--|--| | Maintain signage at over 55 GI installations. | Entire city with New
Haven Independent
article and signage. | - Impact of
impervious cover
- Purpose of GI and
how it works | | Engineering in partnership with Urban
Resources Initiative and Save the Sound | | Update of GI and sustainable land use practices in New Haven's 2022 Sustainable Connecticut Certification. | All publicly available on the Sustainable Connecticut website. | - Impact of impervious cover, fertilizers, pesticides - Purpose of GI | | Engineering | | Research project to install, monitor, and assess
the effectiveness of three litter traps at the end
of three stormwater outfalls discharging to
Beaver Pond (tributary to West River) | Results of the research
will be used to develop
anti-litter outreach
campaign | -litter
- sources of
pollutants | | Engineering Dept in collaboration with
Urban Resources Initiative, Yale School or
Forestry and Environmental Studies | | West River Watershed Coalition and the Mill River Watershed association lead walks and hikes along the banks of the West River and Mill River to educate and garner up interest in the restoration of these resources. | Dozens of events held
every year | -Impact of impervious cover - West and Mill Rivers as community resources watershed restoration | West River Watershed Coalition and Mill River Watershed Association. | |--|--|--|--| | Mill River Watershed Association holds monthly meetings focused on watershed health | Monthly meetings with about 20-30 attendees | - Impact of impervious cover - Importance of local rivers - Watershed education and awareness | City Plan and Engineering | | West River Watershed Coalition hosted
workshops to review progress and prioritize
actions from their 2015 watershed management
plan | Four workshops with
about 15-30 people in
attendance at each | - Watershed education and awareness - Importance of local rivers - Watershed restoration - Water quality | West River Watershed Coalition, Engineering Dept | ## 2. Public Involvement/Participation (Section 6(a)(2) / page 21) #### 2.1 BMP Summary | ВМР | Status | Activities in current reporting period | Measurable
goal | Department /
Person
Responsible | Due | Date
completed or
projected
completion
date | Additional details | |---|---------|---|-------------------------|---------------------------------------|-----------|---|---| | 2-1 Continue
availability of Final
Stormwater
Management Plan to
the public | Ongoing | SWMP
available on
website (see
below 2.3) | Link to plan | Engineering | Ongoing | Completed | Website:- http://www.newhavenct.gov/government/departments-divisions/engineering/stormwater | | 2-2 Comply with
public notice
requirements for
Annual Reports | Ongoing | Annual Report
available on
website (see
below 2.3) | Link to draft
report | Engineering | 2/18/2022 | To be completed annually on Feb 15 th | Website:- http://www.newhavenct.gov/government/departments-divisions/engineering/stormwater | ## 2.2 Describe any Public Involvement/Participation activities planned for the next year, if applicable. None are planned at present by the City, but these activities are expected to occur. Many are instigated by the City's Environmental Advisory Council, or by the West River and Mill River Watershed associations ## 2.3 Public Involvement/Participation reporting metrics | Metrics | Implemented | Date | Posted | |--|-------------|-----------|--| | Availability of the Stormwater Management Plan to public | Υ | July 2017 | A hard copy is kept for public review at the Engineering Department's reception desk, Hall of Records, 200 Orange Street, New Haven. Additionally, an electronic version is published on the City's web site at: http://www.newhavenct.gov/gov/depts/engineering/stormwater.htm | | Availability of Annual Report announced to public | Υ | 2/15/2023 | A hard copy is kept for public review at the Engineering Department's reception desk, Hall of Records, 200 Orange Street, New Haven. Additionally, an electronic version is published on the City's web site at:- http://www.newhavenct.gov/government/departments-divisions/engineering/stormwater | ## 3. Illicit Discharge Detection and Elimination (Section 6(a)(3) and Appendix B / page 22) | вмР | Status | Activities in current reporting period | Measurable
goal | Department /
Person
Responsible | Due | Date completed or
projected completion date | Additional details | |---|-----------|--|--|---------------------------------------|----------------|---|---| | 3-1 Develop written
IDDE program | Completed | IDDE protocol
researched and
written in early
2018 | IDDE Protocol
Document | Engineering | Jul 1,
2018 | March 2, 2018 | The document is considered to be a 'living document', in as far as it will be modified over time as new problems are encountered, and as experience is gained | | 3-2 Develop list and
maps of all MS4
stormwater outfalls
in priority areas | Completed | Minor updating when errors or omissions have been detected during field visits | (1) Excel spreadsheet listing all outfalls, locations and type of construction. (2) A photo log of all outfalls with condition data. (3) 1" to 80" plans showing all outfalls and listing their drainage basins. | Engineering | Jul 1,
2019 | In stages
between 2004
and 2009 | The City's outfalls drain to the Quinnipiac, Mill River, West River, and New Haven Inner and Outer harbor. All are waters impaired by bacteria, nitrogen and phosphorus. A water testing program is underway to determine priorities. During 2019 the list was reviewed to remove outfalls in DOT property that are now covered by their MS4 Permit. This exercise is now about 90% complete, and to date has reduced the number of outfalls covered by the City's permit from 260 to 172. | | 3-3 Implement citizen reporting program | Completed | Monitoring of
the "See Click-
Fix" web site for
citizen reports,
and rectification | "See Click-
Fix" website | All City
Departments | Jul 1,
2017 | Circa 2010 | Citizen reports cover a large number of issues affecting stormwater run-off, from blocked or damaged catch basins through to illegal dumping. Appendix 1 of the 2018 Report includes a typical "See Click-Fix" posting | | | | of the problem | | | | | | |--|-----------|--|--|--|------------------|--------------|--| | 3-4 Establish legal
authority to prohibit
illicit discharges | Completed | No enforcement
actions have
been taken
during 2018 | Title III
Chapter26
Code of
Ordinances | Engineering
and
Corporation
Counsel | Jul 1,
2018 | June 6, 2016 | Can be viewed at - https://library.municode.com/ct/ new_haven/codes/code_of_ordinances?nodeId= TITIIICOGEOR_CH26STDI&showChanges | | 3-5 Develop record
keeping system for
IDDE tracking | Completed | Review of CCTV
footage of storm
drains to detect
any illicit
connections | 70,000 linear
feet of CCTV
footage per
year | Engineering | Jul 1,
2017 | Not known | CCTV footage is kept on a hard drive with all pipe lengths uniquely numbered. This is backed up by drawings illustrating the pipe networks. For each outfall, a register is kept of any potential problem areas. | | 3-6 Address IDDE in
areas with
pollutants of
concern | On-going | | Prompt
removal of
illicit
connection | Engineering | Not
specified | | Illicit connections into the storm system will be removed when found. To date, the CCTV inspections have found no illicit connections. | | 3-7 CCTV of storm
lines to search for
illicit connections | On-going | Approx 1,500 ft
of storm line
CCTVed in 2022 | 5,000 linear
feet of CCTV
footage in
2022 | Engineering | | Continuing | During 2022, CCTV work has been routine detection of defects and blockages. It has also been reviewed for illicit connections, but none were found. | ## 3.2 Describe any IDDE activities planned for the next year, if applicable. The CCTV program has been in operation for approximately five years. To date approximately 100,000 linear feet have been given a preliminary review, with no definitive illicit connections located. CCTV work exclusively for IDDE purposes will resume later in 2023. ## 3.3 List of citizen reports of suspected illicit discharges received during this reporting period. | Date of Report | Location / suspected source | Response taken | |------------------------|-----------------------------|----------------| | No reports during 2022 | | | # 3.4 Provide a record of illicit discharges occurring during the reporting period and SSOs occurring July 2012 through end of reporting period using the following table. | Location
(Lat long/ street
crossing /address and
receiving water) | Date and duration of occurrence | Discharge to
MS4 or
surface water | Estimated volume discharged | Known or
suspected cause
/ Responsible
party | Corrective measures planned and completed (include dates) | Sampling data
(if applicable) | |--|---------------------------------|---|-----------------------------|---|---|----------------------------------| | SSO response and | | | | | | | | record keeping is undertaken by the | | | | | | | | Greater New Haven
Water Pollution
Authority | | | | | | | ## 3.5 Briefly describe the method used to track illicit discharge reports, responses to those reports, and who was responsible for tracking this information. - 1. The tracking system for illicit sanitary connections is as described in section 3.1.5 above. To date no such connections have been detected. - 2. Records of other potentially polluting events are kept on the "see Click Fix" web site. - 3. Direct citizen reports sent to City Engineer. City Engineer responsible for enforcement action and City Engineer and Assistant City Engineer responsible for tracking this information. ## 3.6 Provide a summary of actions taken to address septic failures using the table below. | Location and nature of structure with failing septic systems | Actions taken to respond to and address the failures | Impacted waterbody or watershed, if known | |---|--|---| | There are no precise records, but as of 2020 it is believed there are only 10 to 20 septic systems left in the City. There were no reports of failures during 2022. | | | ## 3.7 IDDE reporting metrics | Metrics | | |--|---| | Estimated or actual number of MS4 outfalls | 146 (Up from 130 in 2021). The change is primarily due to errors and omissions in the city's mapping. | | Estimated or actual number of interconnections | See below | | Outfall mapping complete | 100% | | Interconnection mapping complete | 100% | | System-wide mapping complete (detailed MS4 infrastructure) | 100% | | Outfall assessment and priority ranking | See below | | Dry weather screening of all High and Low priority outfalls complete | See below | | Catchment investigations complete | See below | | Estimated percentage of MS4 catchment area investigated | Approximately 75% to 80% complete. | 3.8 Briefly describe the IDDE training for employees involved in carrying out IDDE tasks including what type of training is provided and how often is it given (minimum once per year). There is no formal training system in place at present as all IDDE work to date has been undertaken by registered professional engineers. The main reference document for this work is "Illicit Discharge Detection & Elimination" by the Center for Watershed Protection. ## 4. Construction Site Runoff Control (Section 6(a)(4) / page 25) | ВМР | Status | Activities in current reporting period | Measurable
goal | Department /
Person
Responsible | Due | Date completed or
projected
completion date | Additional details | |--|-----------|--|---|---|----------------|---|--------------------| | 4-1 Implement, upgrade, and enforce land use regulations or other legal authority to meet requirements of MS4 general permit | Completed | See 4.2 below | | City Plan | Jul 1,
2019 | Sept 19, 2011
 | | 4-2 Develop/Implement plan
for interdepartmental
coordination in site plan review
and approval | On-going | See 4.2 below | 32 Site plan
review
applications in
2021 | City Plan
Engineering
Building Dept | Jul 1,
2017 | Since 2004 | | | 4-3 Review site plans for stormwater quality concerns | On-going | See 4.2 below | 32 Site plan
review
applications in
2021 | Engineering | Jul 1,
2017 | Since 2004 | | | 4-4 Conduct site inspections | On-going | See 4.2 below | Records, do
not exclusively
track BMP
inspections,
but 90 to 100
inspections is
considered a
good estimate | Building Dept
Engineering | Jul 1,
2017 | Since 2004 | | | 4-5 Implement procedure to allow public comment on site development | On-going | See 4.2 below | Monthly City
Plan
Commission
meetings | City Plan
Commission | Jul 1,
2017 | Since 2004 | | | 4-6 Implement procedure to notify developers about DEEP construction stormwater permit | On-going | See 4.2 below | This is part of
the Site plan
application
process | City Plan | Jul 1,
2017 | Since 2004 | | ## 4.2 Describe any Construction Site Runoff Control activities planned for the next year, if applicable. The City Plan Commission reviews all development plans prior to approval. There are monthly meetings at which commissioners review developments and approve them, or otherwise. These meetings are open to all, and members of the public can comment on any aspect of a development. Various city departments review the plans prior to City Plan Commission review, and there are bi-monthly co-ordination meetings between the departments involved. In the case of stormwater, input is from City Plan, the Engineering Department, the Building Department, and the Greater New Haven Water Pollution Control Authority. As required by Section 60 of the Zoning Code, the developer's engineer submits a Stormwater Management Plan addressing compliance with the City's ordinances, including Soil Erosion and Sediment Control plans. A typical report is included as Appendix 2 of the 2018 Annual Report. As part of the approval process, City Plan prepares a project specific report indicating any special requirements. A typical example which has stormwater related requirements is included as Appendix 3 of the 2018 Annual Report. A building permit is not issued until all the conditions of an approval are met. Site inspections by Building Department and Engineering Department staff during construction ensure SESC controls are in place, and that all work is in compliance with the approved design, including stormwater elements, prior to the issuance of a Certificate of Occupancy. Sections 57, 58 and 60 of Article VI of the City's code of ordinances are the mechanism by which the requirements of the MS4 permit are met. They include low impact development requirements and the retention on site of one inch of rainfall. They can be viewed at the following web address:- https://library.municode.com/ct/new haven/codes/zoning?nodeId=ZOOR ARTVIOTDI ## 5. Post-construction Stormwater Management (Section 6(a)(5) / page 27) | ВМР | Status | Activities in current reporting period | Measurable
goal | Department / Person Responsible | Due | Date completed or
projected
completion date | Additional details | |--|-----------|--|--|---------------------------------|----------------|---|--------------------| | 5-1 Establish and/or update legal authority and guidelines regarding LID and runoff reduction in site development planning | Completed | See 4.2 above | Section 60 of
the Zoning
Ordinance | City Plan | Jul 1,
2021 | Sept 19, 2011 | | | 5-2 Enforce LID/runoff reduction requirements for development and redevelopment projects | On-going | See 4.2 above | Approximately 24 stormwater management plans submitted for development projects during 2022 | City Plan | Jul 1,
2019 | On-going | | |--|---|--|---|-------------|----------------|----------|---| | 5-3 Identify retention and detention ponds in priority areas | Completed | None | None | Engineering | Jul 1,
2019 | | There are no known retention / detention structures under the City's jurisdiction | | 5-4 Implement long-term
maintenance plan for
stormwater basins and
treatment structures | Not
necessary
at the
present
time | | | Engineering | Jul 1,
2019 | On-going | There are no known structures of these types under the City's jurisdiction. | | 5-5 DCIA mapping | On-going State of the | The City has approx. 260 1"=40' planimetric and topographic maps, and until 2022 DCIA was computed from these in a substantially manual way. This was found to be very inefficient and time consuming. During 2022 new staff were appointed to the GIS department, and work on updating the city's GIS system, in conjunction with the use of Archydro computer software will be used for this task going forward. In addition, the City is currently using mapping resources provided by UCONN | Completion | Engineering | Jul 1,
2020 | | | | | NEMO for DCIA
mapping and for
baseline DCIA
calculations. See below
for details. | | | |--|--|------------------|--| | 5-6 Address post-construction issues in areas with pollutants of concern | | Not
specified | | ## 5.2 Describe any Post-Construction Stormwater Management activities planned for the next year, if applicable. | See Section 6.2 below. | | | | |------------------------|--|--|--| | | | | | | | | | | | | | | | ## **5.3 Post-Construction Stormwater Management reporting metrics** | Metrics | | |---|--| | Baseline (2012) Directly Connected Impervious Area (DCIA) | 3,155 acres | | DCIA disconnected (redevelopment plus retrofits) | 34.4 acres have been disconnected due to retrofits within the public right of way (i.e. bioswales). In addition, there have been DCIA disconnections on private property since 2011 when Section 60 of the Zoning Ordinance was adopted. As this was prior to the 2017 MS4 Permit records were not kept. It is intended that records will be researched, and the amount of work already done will be quantified. | | Retrofits completed | 200 ROW bioswales | | DCIA disconnected | Over 34.4 acres | | Estimated cost of retrofits | 178 bioswales throughout downtown cost \$2.52M. Not known for the private development projects. | |
Detention or retention ponds identified | There are no known detention or retention ponds under the City's jurisdiction | ## 5.4 Briefly describe the method to be used to determine baseline DCIA. The 2012 imperviousness layer was downloaded from the CT ECO website. This layer was used to calculate the imperviousness within the combined sewer areas of New Haven so that it can be subtracted out from the total impervious acreage. After subtracting out State Roads and Combined Sewer impervious cover from New Haven's total impervious acreage (according to UCONN's MS4 map), the total impervious cover within MS4 areas in New Haven is 3,809.7 acres. This amounts to 38% impervious after adjusting the City's total acreage minus the combined sewer and state road acreage (10,015.9 acres). Using the methodology developed by EPA for Massachusetts, the City was conservatively assigned as 'Highly Connected' and the associated equation was used to convert the total imperviousness percentage to DCIA percentage. The DCIA percentage is 31.5% or 3,155 acres. In the future, the City plans to delineate watersheds for each of its outfalls at which time the DCIA for each watershed will be calculated. The same methodology as above will be applied. There may be some difference in the baseline DCIA due to the assignment of connectivity levels on the watershed rather than city-wide scale. Many neighborhoods outside of the downtown area are likely to be assigned as 'Average' rather than 'Highly Connected.' The City is still in the process of compiling the impervious acreage that has been disconnected due to redevelopment. The City's ROW bioswale program has disconnected about 34.4 acres of the City's directed connected impervious area (see Section 6.5 below) ## **6. Pollution Prevention/Good Housekeeping** (Section 6(a)(6) / page 31) | вмР | Status | Activities in current reporting period | Measurable
goal | Department / Person Responsible | Due | Date completed or
projected
completion date | Additional details | |---|------------------------|---|--|---------------------------------|------------------|---|--| | 6-1 Develop/implement formal employee training program | On-going | | Annual training
of Public Works
and Parks Dept
operatives | Public Works
Parks Dept | Jul 1,
2017 | Continuing | Training materials in the form of presentation slides are available | | 6-2 Implement MS4 property
and operations maintenance | On-going | Pavement sweeping
and trash removal
from the Public Works
Garage, the Refuse
Vehicle Garage, and
the transfer Station
sites | Meeting target
pollutant levels
in the relevant
DEEP general
permit | Public Works | Jul 1,
2018 | Continuing | Facilities covered by
DEEP Industrial Discharge
General permits
GSI000800, GSI001690
and GSI002097 | | 6-3 Implement coordination with interconnected MS4s | On-going (as required) | Discussions with staff
from West Haven and
North Haven on minor
issues and the
exchange of
information | See 3.7 above | Engineering | Not
specified | Continuing as required | | | 6-4 Develop/implement program to control other sources of pollutants to the MS4 | | None | | Engineering | Not
specified | | There are no known sources of other pollutants to the MS4 | | 6-5 Evaluate additional
measures for discharges to
impaired waters* | | None | | Engineering | Not
specified | | In previous years ABTECH pollutant absorbing sponges were installed at the Public Works Garage, and although found to be effective they were prohibitively expensive | | 6-6 Track projects that
disconnect DCIA | On-going | The Site Plan review process as described in 4.2 above has been on-going, and data has been included in the development reports, an example of which is included in Appendix 3 to the 2018 Report | Spread sheet
listing all
developments
since 2017 with
DCIA
reductions | Engineering | Jul 1,
2017 | Work is in progress
on 2017 thru 2022
developments to
quantify the DCIA
already achieved. | It is intended, dependent
on staff availability, to
track projects back to
2012. | | 6-7 Implement infrastructure repair/rehab program | On-going | Approximately
\$400,000 spent on
minor repair and
maintenance of
stormwater
infrastructure, mostly
on catch basins and
piping | Keeping all
infrastructure
in a state of
good repair | Engineering | Jul 1,
2021 | Continuing | | |---|-----------|---|---|--------------|----------------|------------|---| | 6-8 Develop/implement plan to identify/prioritize retrofit projects | On-going | Continued water sampling and testing to determine the worst polluted watersheds that will need attention first. | | Engineering | Jul 1,
2020 | Continuing | | | 6-9 Implement retrofit projects
to disconnect 2% of DCIA | Commenced | Developing methodology for tracking new/re-development disconnection, retrofitting streets in downtown with ROW bioswales | Acres of impervious area disconnected | Engineering | Jul 1,
2022 | Continuing | Over the last five years
286 bioswales have been
installed in the public
ROW, 200 of those within
MS4 areas | | 6-10 Develop/implement street sweeping program | On-going | All streets within the
City are swept 4 or 5
times annually
between April and
November | Visually clear of
trash, dust, and
leaves at all
times | Public Works | Jul 1,
2017 | Continuing | | | 6-11 Develop/implement catch basin cleaning program | On-going | 4,130 routine cleanings of catch basins, approximately 45 emergency cleanings when either blocked or non-functioning, and 2,290 linear feet of storm line jetting to remove blockages | Clean every
catch basin
once every two
years | Engineering | Jul 1,
2020 | Continuing | | | 6-12 Develop/implement snow management practices | On-going | Application of chloride liquid de-icer and sand/salt as required. No specific metrics available | Maintenance
of safe
movement of
traffic | Public Works | Jul 1,
2018 | Continuing | | ## 6.2 Describe any Pollution Prevention/Good Housekeeping activities planned for the next year, if applicable. - 1. Continued street sweeping 4 or 5 times during the year - 2. Continued catch basin cleaning Approx 4,500 - 3. Spill response As required - 4. Illicit dumping response As required - 5. Litter removal in the downtown area and city parks As required - 6. Continued maintenance of bioswales and GI within the public right of way, including trash and sediment removal. #### 6.3 Pollution Prevention/ Good Housekeeping reporting metrics | Metrics | | |--|---| | Employee training provided for key staff | Yearly refresher class to all Public Works and Parks Department employees | | Street sweeping | | | Curb miles swept | 231 miles swept monthly | | Volume (or mass) of material collected | Not recorded | | Catch basin cleaning | | | Total catch basins in priority areas | Approx 8,500 | | Total catch basins in MS4 | Approx 8,500 | | Catch basins inspected | Approx 4,130 | | Catch basins cleaned | Approx 4,130 | | Volume (or mass) of material removed from all catch basins | Approx 75,000 Cu F | | Volume removed from catch basins to impaired waters (if known) | Approx 79,000 Cu F | | Snow management | | | Type(s) of deicing material used | Salt | | Total amount of each deicing material applied | Varies based on
storm event | | Type(s) of deicing equipment used | Truck mounted | | Lane-miles treated | 231 miles | | Snow disposal location | No data available | |--|--| | Staff training provided on application methods & equipment | Yearly refresher course at start of snow season | | Municipal turf management program actions (for permittee properties in basins with N/P impairments) | | | Reduction in application of fertilizers (since start of permit) | None used | | Reduction in turf area (since start of permit) | Nothing substantial | | Lands with high potential to contribute bacteria (dog parks, parks with open water, & sites with failing septic systems) | The City has approximately 2,000 acres of parkland, which have significant populations of birds and wildlife | | Cost of mitigation actions/retrofits | None | ## 6.4 Catch basin cleaning program Provide any updates or modifications to your catch basin cleaning program No changes. Expect to clean 4,500 in 2023 #### 6.5 Retrofit program Briefly describe the Retrofit Program identification and prioritization process, the projects selected for implementation, the rationale for the
selection of those projects and the total DCIA to be disconnected upon completion of each project. [Provide information if available in 2018 report. Section to be completed for the 2019 Annual Report.] Currently, in addition to the disconnection taking place as part of new and major re-development projects, the City is also retrofitting streets with right-of-way (ROW) bioswales. 286 bioswales have been installed thus far with 200 of these constructed within the MS4 watershed. The City will continue to incorporate green infrastructure into all its projects as applicable. Each bioswale has a catchment area of about 7,500 square feet (100:1 ratio of catchment area to bioswale footprint area). With 200 installations complete, the total disconnected impervious area from these installations is 34.4 acres, over 1% of the City's estimated DCIA. Describe plans for continuing the Retrofit program and how to achieve a goal of 1% DCIA disconnection in future years. [Provide information if available in 2018 report. Section to be completed for the 2019 Annual Report.] It is anticipated that the retrofit program will consist of two elements. One will be the continued installation of bioswales and incorporation of green infrastructure into the City's ROW projects. The other will be the retention of the first inch of rainfall on new and major re-developments, many of which are currently under construction, with more at the planning stage. Describe plans for continuing the Retrofit program beyond this permit term with the goal to disconnect 1% DCIA annually over the next 5 years. [Provide information if available in 2018 report. Section to be completed for the 2019 Annual Report.] As described in the previous section. Part II: Impaired waters investigation and monitoring [This section required beginning with 2018 Annual Report] | 1. | Impaired | waters | investigation | and | monitoring program | | |----|-----------------|--------|---------------|-----|--------------------|--| |----|-----------------|--------|---------------|-----|--------------------|--| | 1.1 Indicate which stormwater pollutan on the MS4 map viewer: http://s.ucor | | | cipality or institution. This data is availa | ole | |---|------------|-----------|--|-----| | Nitrogen/ Phosphorus | Bacteria 🗌 | Mercury 🗌 | Other Pollutant of Concern | | 1.2 Describe program statu Discuss 1) the status of monitoring work completed, 2) a summary of the results and any notable findings, and 3) any changes to the Stormwater Management Plan based on monitoring results. The City has monitored water quality per the 2004 permit since its inception, and has always had bacteria, nitrogen and phosphorus levels above target levels, sometimes significantly so. The City was audited by the EPA during 2014 and 2016, at which times they undertook PPCP testing at the outfalls monitored by the City. These indicated that sewage was entering the storm system. The EPA test results were submitted to DEEP with the 2017 annual report. City staff have always believed that the high levels of bacteria are due to wildlife, which has probably contributed to the high levels of nitrogen also. In consequence the City undertook PPCP sampling of gutter flows in to catch basins. Several of the parameters in the PPCP spectrum had similar levels to those previously found at outfalls, reinforcing the City's opinion that the problems at the outfalls were due to contamination by animal excrement rather than sanitary sewer cross connections. The City has had an extensive sewer separation program in place for the last twenty years, and so far the CCTV review has found no illicit connections. No doubt some will be found in due course as the CCTV program proceeds. The water testing undertaken during 2020 consisted monitoring at both the catch basins and outfalls, all samples on a network being collected within an hour of each other, so the test results would be a reasonably good comparison of what is going into the system with what is coming out. A review of the results available so far indicates that the stormwater entering at the catch basins is as polluted as that leaving the outfalls. Using the term "outfall" here is not fully correct as they are generally submerged. The sampling is at a close by upstream manhole. Testing results since 2018 are included in Section 2.1 below, and also in Appendix 1, which also includes inflow data at catch basins. Going forward the City will sample at all outfalls and typical catch basins on selected pipe networks. All sampling is "Wet Weather", and the vast majority of tests are undertaken at a laboratory. The sampling and testing at catch basins can be looked on as the "follow up Investigation" of the situation at the outfall. Work will progress in the ranking order as indicated in Part iii Table 1 below, as far as is possible. Delineation of outfall catchments, the calculation of impervious areas, and the estimation of DCIA will proceed in the same order. The following parameters have been and will be tested at all outfalls and selected catch basins :- - 1. E-Coli (Col/100ml) * - 2. Total coliform - 3. Fecal coliform - 4. Enterococci - 5. Ammonia (mg/l) * - 6. Chlorine - 7. Conductivity (umos) * - 8. Salinity - 9. Surfactants - 10. pH (SU) * - 11. Hardness (mg/l) * - 12. Oil and grease (mg/l) * - 13. Chemical oxygen demand (mg/l) * - 14. Turbidity (NTU) * - 15. Total suspended solids (mg/l) * - 16. Total phosphorus (mg/l) * - 17. Total Kjeldahl Nitrogen (mg/l) * - 18. Nitrate plus nitrite Nitrogen (mg/l) * - 19. Temperature of sample * - pH (SU) of uncontaminated rainfall * - 21. Boron (mg/l) The items marked * are the same parameters tested under the MS4 permit in place between 2004 and 2017. They are continuing to be monitored as they give a general indication as to how dirty the storm discharges are, and it is hoped a database built up over many years will indicate general improvements. Starting mid-2018 all bacteria samples were split to be tested at two separate and independent laboratories as a check on their accuracy. This practice has been continued during 2021. ## 2. Screening data for outfalls to impaired waterbodies (Section 6(i)(1) / page 41) #### 2.1 Screening data Complete the table below for any outfalls screened during the reporting period. Each Annual Report will add on to the previous year's screening data showing a cumulative list of outfall screening data. | Outfall ID | Sample
date | Parameter
(Nitrogen,
Phosphorus, Bacteria,
or Other pollutant of
concern) | Results | Name of
Laboratory (if
used) | Follow-up required? | |--------------------|----------------|---|---|------------------------------------|---------------------| | O-180
(5200-00) | 6/21/18 | Bacteria | E. coli
616 MPN/100mls
Enterococci
>24,200 | Phoenix Phoenix | Yes | | | | | MPN/100mls Fecal Coliform 605 MPN/100mls | Phoenix | Yes | | | | | Total Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | Nitrogen
Phosphorus | Total N 3.08 mg/l Total P 0.123 mg/l | Phoenix
Phoenix | Yes | | O-119
(5305-00) | 6/28/18 | Bacteria | E.Coli
3,450 MPN/100mls | Phoenix | Yes | | (22222) | | | Enterococci
12,000 MPN/100mls | Phoenix | Yes | | | | | Fecal Coliform
4,110 MPN/100mls | Phoenix | Yes | | | | | Total Coliform >242,000 | Phoenix | Yes | | | | Phosphorus | Total P 0.076 mg/l | Phoenix | No | |-------------------------|----------|------------------------|--|--------------------|-----| | | | Nitrogen | Total N 0.66 mg/l | Phoenix | No | | | | | Total Coliform
17,300 MPN/100mls
17,250 MPN/100mls | Phoenix
ECL | Yes | | | | | Fecal Coliform
383 MPN/100mls
300 MPN/100mls | Phoenix
ECL | Yes | | | | | Enterococci
602 MPN/100mls
310 MPN/100mls | Phoenix
ECL | Yes | | O-11 11/13/18 (5305-00) | 11/13/18 | Bacteria | E Coli
609 MPN/100mls
200 MPN/100mls | Phoenix
ECL | Yes | | | | Nitrogen
Phosphorus | Total N 3.48 mg/l Total P 0.545 mg/l | Phoenix
Phoenix | Yes | | | | | MPN/100mls | | | | 0-7 | 11/13/18 | Bacteria | E Coli | | | | |-----------|----------|------------|------------------------|-----------|-----|--| | (5305-00) | | | >24,200 | Phoenix | Yes | | | | | | MPN/100mls | | | | | | | | 241,960 | ECL | Yes | | | | | | MPN/100mls | | | | | | | | | | | | | | | | Enterococci | | | | | | | | >24,200 | Phoenix | Yes | | | | | | MPN/100mls | | | | | | | | >241,960 | ECL | Yes | | | | | | MPN/100mls | | | | | | | | 2 2001113 | | | | | | | | Fecal Coliform | | | | | | | | >24,200 | Phoenix | Yes | | | | | | MPN/100mls | FIIOEIIIX | 163 | | | | | | 48,840 MPN/100mls | ECL | Yes | | | | | | 48,840 WIFIN/ 100IIIIS | ECL | 163 | | | | | | Total Coliform | | | | | | | | | Observing | Voc | | | | | | >24,200 | Phoenix | Yes | | | | | · · | MPN/100mls | | | | | | | | >241,960 | ECL | Yes | | | | | | MPN/100mls | | | | | | | | | | | | | | | Nitrogen | Total N 14.69 mg/l | | | | | | | | | Phoenix | Yes | | | | | Phosphorus | Total P 1.34 mg/l | | | | | | | | | Phoenix | Yes | 0-10 | 12/28/18 | Bacteria | E Coli | | | | | (5305-00) | | | >24,200 | Phoenix | Yes | |------------------|----------|------------|--|----------------|------------| | | | | MPN/100mls
>241,960
MPN/100mls | ECL | Yes | | | | | Enterococci >24,200 MPN/100mls | Phoenix | Yes | | | | | >241,960
MPN/100mls | ECL | Yes | | | | | Fecal Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | >241,960
MPN/100mls | ECL | Yes | | | | | Total Coliform >24,200 MPN/100mls
>241,960 | Phoenix
ECL | Yes | | | | | MPN/100mls | | | | | | Nitrogen | Total N 16.67 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 1.76 mg/l | Phoenix | Yes | | | | | | | | | 0-12 | 11/13/18 | Bacteria | E Coli | | | | (5305-00) | 11,13,13 | Sections | 5,480 MPN/100mls
5,040 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | Enterococci
5,170 MPN/100mls
6,770 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | Fecal Coliform
1,860 MPN/100mls
1,560 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | Total Coliform >24,200 MPN/100mls 198,630 | Phoenix | Yes | | | | | MPN/100mls | ECL | Yes | | | | Nitrogen | Total N 0.44 mg/l Total P 0.229 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.229 Ing/I | Phoenix | No | | O13
(5305-00) | 12/28/18 | Bacteria | E Coli
>24,200
MPN/100mls | Phoenix | Yes | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | |-------------------|----------|------------------------|---|---------------------------------|-------------| | | | | | | | | | | | Enterococci | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | 61,310 | ECL | Yes | | | | | MPN/100mls | | | | | | | | | | | | | | Fecal Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | 155,310 | ECL | Yes | | | | | MPN/100mls | | | | | | | | | | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | | | | | | | | Nitrogen | Total N 17.49mg/l | Phoenix | Yes | | | | | | | | | | | Phosphorus | Total P 2.02mg/l | Phoenix | Yes | | | | | | | | |)-41 | 12/28/18 | Bacteria | E Coli | | | | 5305-00) | | | >24,200 | Phoenix | Yes | | • | | | MPN/100mls | | | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | | Enterococci | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | , | | | | | | 92,080 | ECL | Yes | | | | | | | | | | | | | | | | | | | MPN/100mls | | | | | | | MPN/100mls Fecal Coliform | | | | | | | MPN/100mls | Phoenix | Yes | | | | | MPN/100mls Fecal Coliform | | Yes | | | | | MPN/100mls Fecal Coliform >24,200 | | Yes | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls | Phoenix | | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls | Phoenix | | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total Coliform | Phoenix | Yes | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total Coliform >24,200 | Phoenix | | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total Coliform >24,200 MPN/100mls | Phoenix
ECL
Phoenix | Yes | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total Coliform >24,200 MPN/100mls >241,960 | Phoenix | Yes | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total Coliform >24,200 MPN/100mls | Phoenix
ECL
Phoenix | Yes | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total Coliform >24,200 MPN/100mls >241,960 MPN/100mls | Phoenix ECL Phoenix ECL | Yes
Yes | | | | Nitrogen | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total Coliform >24,200 MPN/100mls >241,960 | Phoenix
ECL
Phoenix | Yes | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total N 11.49 mg/l | Phoenix ECL Phoenix ECL Phoenix | Yes Yes Yes | | | | Nitrogen
Phosphorus | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total Coliform >24,200 MPN/100mls >241,960 MPN/100mls | Phoenix ECL Phoenix ECL | Yes
Yes | | 0.45 | 12/21/19 | Phosphorus | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total N 11.49 mg/l Total P 1.33 mg/l | Phoenix ECL Phoenix ECL Phoenix | Yes Yes Yes | | O-46
(5305-00) | 12/21/18 | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total N 11.49 mg/l | Phoenix ECL Phoenix ECL Phoenix | Yes Yes Yes | | | | | Catanagasi | | | |----------|----------|------------|---|-----------|-----| | | | | Enterococci | | | | | | | 2,280 MPN/100mls | Phoenix | Yes | | | | | 1,990MPN/100mls | ECL | Yes | | | | | | | | | | | | Fecal Coliform | | | | | | | | | | | | | | 197 MPN/100mls | Phoenix | Yes | | | | | 200 MPN/100mls | ECL | Yes | | | | | | | | | | | | T-t-I California | | | | | | | Total Coliform | | | | | | | 9,800 MPN/100mls | Phoenix | Yes | | | | | 8,420 MPN/100mls | ECL | Yes | | | | | | | | | | | | T . 101 0 40 // | Ob | | | | | Nitrogen | Total N 0.42 mg/l | Phoenix | No | | | | | | | | | | | Phosphorus | Total P 0.13 mg/l | Phoenix | No | | | | Thosphorus | 10tar 1 0.15 mg/ | 1 Hoelinx | 110 | | | | | | | | |)-47 | 12/21/18 | Bacteria | E Coli | | | | 5305-00) | | | 9,140 MPN/100mls | Phoenix | Yes | | | | | 3,360 MPN/100mls | ECL | Yes | | | | | 3,300 WENT TOURS | LCL | 163 | | | | | | | | | | | | Enterococci | | | | | | | 3,870 MPN/100mls | Phoenix | Yes | | | | | | ECL | | | | | | 1,580 MPN/100mls | ECL | Yes | | | | | | | | | | | | Fecal Coliform | | | | | | | 5,170 MPN/100mls | Phoenix | Yes | | | | | | | | | | | | 1,610 MPN/100mls | ECL | Yes | | | | | | | | | | | | Total Coliform | | | | | | | 10,100 MPN/100mls | Phoenix | Yes | | | | | | | | | | | | 13,540 MPN/100mls | ECL | Yes | | | | | | | | | | | Nitrogen | Total N 0.72 mg/l | Phoenix | No | | | | Microgen | Total IV 0.72 mg/ | THOCHIA | | | | | | | | | | | | Phosphorus | Total P 0.161 mg/l | Phoenix | No | | | | | | | | | D-57 | 12/28/18 | Bacteria | E Coli | | | | | 12/20/10 | Ducteria | | Dhaoniu | Voc | | 5305-00) | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | 100 | | | | | | IVIPIN/ TOUTIIS | | | | | | | | | | | | | | Enterococci | | | | | | | >24,200 | Phoenix | Yes | | | | | | HOCHIA | 103 | | | | | MPN/100mls | | | | | | | | ECL | Vos | | | | | >241,960 | LCL | Yes | | | | | | ECL | res | | | | | >241,960
MPN/100mls | LCL | Tes | | | | | MPN/100mls | LCL | res | | | | | MPN/100mls Fecal Coliform | | | | | | | MPN/100mls Fecal Coliform | | Yes | | | | | MPN/100mls Fecal Coliform >24,200 | Phoenix | | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls | Phoenix | Yes | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 | | | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls | Phoenix | Yes | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 | Phoenix | Yes | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 MPN/100mls | Phoenix | Yes | | | | | MPN/100mls Fecal Coliform >24,200 MPN/100mls >241,960 | Phoenix | Yes | | | | | MPN/100mls
>241,960
MPN/100mls | ECL - | Yes | |-------------------|----------|------------|--------------------------------------|---------|-----| | | | Nitrogen | Total N 32.24 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 4.09 mg/l | Phoenix | Yes | | O-58
(5305-00) | 12/28/18 | Bacteria | E Coli
>24,200
MPN/100mls | Phoenix | Yes | | | | | >241,960
MPN/100mls | ECL | Yes | | | | | Enterococci | | | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | | 81,640
MPN/100mls | ECL | Yes | | | | | Fecal Coliform | | | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | | >241,960
MPN/100mls | ECL | Yes | | | | | Total Coliform | | | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | | >241,960
MPN/100mls | ECL | Yes | | | | Nitrogen | Total N 26.01 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 2.96 mg/l | Phoenix | Yes | | D-66 | 11/13/18 | Bacteria | E Coli | | | | |----------|----------|----------|-------------------|---------|-----|--| | 5305-00) | | | 3,080 MPN/100mls | Phoenix | Yes | | | | | | 2,350 MPN/100mls | ECL | Yes | | | | | - 8 | Enterococci | | | | | | | | 2,190 MPN/100mls | Phoenix | Yes | | | | | | 1,350 MPN/100mls | ECL | Yes | | | | | | Fecal Coliform | | | | | | | | 1,480 MPN/100mls | Phoenix | Yes | | | | | | 1,610 MPN/100mls | ECL | Yes | | | | | | Total Coliform | | | | | | | | >24,200 | Phoenix | Yes | | | | | | MPN/100mls | | | | | | | | 61,310 | ECL | Yes | | | | | | MPN/100mls | | | | | | | Nitrogen | Total N 0.49 mg/l | Phoenix | No | | | | | Phosphorus | Total P 0.182 mg/l | Phoenix | No | | |-------------------|----------|------------|---|----------------|-----------|--| | O-68
(5305-00) | 12/28/18 | Bacteria | E Coli
30 MPN/100mls
100 MPN/100mls | Phoenix
ECL | No
No | | | | | | Enterococci
249 MPN/100mls
8,600 MPN/100mls | Phoenix
ECL | No
Yes | | | | | | Fecal Coliform 20 MPN/100mls 100 MPN/100mls | Phoenix
ECL | No
No | | | | | | Total Coliform
13,000 | Phoenix | Yes | | | | | | MPN/100mls
5,810
MPN/100mls | ECL | Yes | | | | | Nitrogen | Total N 0.95 mg/l | Phoenix | No | | | | | Phosphorus | Total P 0.07 mg/l | Phoenix | No | | | | | | | | | | | O-81
(5305-00) | 6/18/19 | Bacteria | E Coli 2,060 MPN/100mls | Phoenix | Yes | | | | | | Enterococci
9,210 MPN/100mls | Phoenix | Yes | | | | | | Fecal Coliform
934 MPN/100mls | Phoenix | Yes | | | | | | Total Coliform >24,200 MPN/100mls | Phoenix | Yes | | | | | Nitrogen | Total N 0.76 mg/l | Phoenix | No | | | | | Phosphorus | Total P 0.072 mg/l | Phoenix | No | | | 0-87 | 12/28/18 | Bacteria | E Coli | | | | | (5305-00) | | | 30 MPN/100mls
100 MPN/100mls | Phoenix
ECL | No
No | | | | | | Enterococci
249 MPN/100mls
8,600 MPN/100mls | Phoenix
ECL | No
Yes | | | | | | Fecal Coliform 20 MPN/100mls | Phoenix | No | | | | | | 100 MPN/100mls | ECL | No | | | | | | Total Coliform
13,000
MPN/100mls | Phoenix | Yes | | | | | |
5,810
MPN/100mls | ECL | Yes | |-----------------|----------|------------|--------------------------------------|---------|-----| | | | Nitrogen | Total N 24.37 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.07 mg/l | Phoenix | No | | -88
(305-00) | 12/28/18 | Bacteria | E Coli
591 MPN/100mls | Phoenix | Yes | | 1303-00) | | | 520 MPN/100mls | ECL | Yes | | | | | Enterococci
471 MPN/100mls | Phoenix | Yes | | | | | 1,100 MPN/100mls | ECL | Yes | | | | | Fecal Coliform
637 MPN/100mls | Phoenix | Yes | | | | | 200 MPN/100mls | ECL | Yes | | | | | Total Coliform >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | 30,760
MPN/100mls | ECL | Yes | | | | Nitrogen | Total N 0.826 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 0.105 mg/l | Phoenix | No | |)-89 | 12/21/18 | Bacteria | E Coli | | | | 5305-00) | 12/21/10 | buccena | 7,700 MPN/100mls
9,590 MPN/100mls | Phoenix | Yes | | | | | | ECL | Yes | | | | | Enterococci
5,480 MPN/100mls | Phoenix | Yes | | | | | 5,540 MPN/100mls | ECL | Yes | | | | | Fecal Coliform 2,610 MPN/100mls | Phoenix | Yes | | | | | 2,980 MPN/100mls | ECL | Yes | | | | | Total Coliform >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | 46,110
MPN/100mls | ECL | Yes | | | | Nitrogen | Total N 0.72 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.133 mg/l | Phoenix | No | E Coli >24,200 MPN/100mls Phoenix Yes Bacteria 0-121 (5302-00) 12/21/18 | | | | Enterococci
>24,200
MPN/100mls | Phoenix | Yes | |---------------------|---------|------------|---|---------|-----| | | | | Fecal Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | Total Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | Nitrogen | Total N 26.94 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 4.0 mg/l | Phoenix | Yes | | O-122
(5302-00) | 4/26/19 | Bacteria | E Coli
7,270 MPN/100mls | Phoenix | Yes | | | | | Enterococci
3,080 MPN/100mls | Phoenix | Yes | | | | | Fecal Coliform
4,880 MPN/100mls | Phoenix | Yes | | | | | Total Coliform | | | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | Nitrogen | Total N 3.77 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 0.40 mg/l | Phoenix | Yes | | O-124
(5302-00) | 4/26/19 | Bacteria | E Coli
>24,200
MPN/100mls | Phoenix | Yes | | | | | Enterococci
4,610 MPN/100mls | Phoenix | Yes | | | | | Fecal Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | Total Coliform >24,200 MPN/100mls | Phoenix | Yes | | | | Nitrogen | Total N 78.95 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 8.51 mg/l | Phoenix | Yes | | O-124X
(5302-00) | 4/26/19 | Bacteria | E Coli
216 MPN/100mls | Phoenix | No | | | | | Enterococci
134 MPN/100mls | Phoenix | No | |--------------------|---------|------------|--|----------------|------------| | | | | Fecal Coliform
395 MPN/100mls | Phoenix | Yes | | | | | Total Coliform
19,900 MPN/100mls | Phoenix | Yes | | | | Nitrogen | Total N 2.623 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 0.196 mg/l | Phoenix | no | | O-125
(5302-00) | 4/26/19 | Bacteria | E Coli
10 MPN/100mls | Phoenix | No | | | | | Enterococci
61 MPN/100mls | Phoenix | no | | ı | | | Fecal Coliform
10 MPN/100mls | Phoenix | Yes | | | | | Total Coliform
934 MPN/100mls | Phoenix | Yes | | | | Nitrogen | Total N 1.13 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 0.067 mg/l | Phoenix | Yes | | O-126
(5302-00) | 4/26/19 | | E Coli
>24,200
MPN/100mls | Phoenix | Yes | | | | | Enterococci
>24,200
MPN/100mls | Phoenix | Yes | | | | | Fecal Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | Total Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | Total N 26.94 mg/l | Phoenix | Yes | | | | | Total P 4.00 mg/l | Phoenix | Yes | | O-126
(5302-00) | 12/9/19 | Bacteria | E Coli
2,600 MPN/100mls
2,750 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | Enterococci
>24,200
MPN/100mls | Phoenix | Yes | | | | | 111 000 | F.C.I | Yes | |-----------|-----------|------------|--------------------------------|-----------|-----| | | | | 111,990
MPN/100mls | ECL | res | | | | | 1011 107 20011113 | | | | | | | Fecal Coliform | | | | | | | 1,080 MPN/100mls | Phoenix | Yes | | | | | 2,130 MPN/100mls | ECL | Yes | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | Nitrogen | Total N 4.014 mg/l | Phoenix | Yes | | | | Mitrogen | 10(a) N 4.014 mg/1 | FIIOEIIIX | 163 | | | | Phosphorus | Total P 0.812 mg/l | Phoenix | Yes | | 0-127 | 4/26/19 | Bacteria | E Coli | | | | - 12/ | ., 20, 23 | 5555.10 | 703 MPN/100mls | Phoenix | Yes | | | | | | | | | | | | Enterococci | Dhasair | Vac | | | | | 1,170 MPN/100mls | Phoenix | Yes | | | | | Fecal Coliform | | | | | | | 24,200 MPN/100mls | Phoenix | No | | | | | | | | | | | | Total Coliform | | W | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | | WIFIN/ TOUTHS | | | | | | Nitrogen | Total N 2.445 mg/l | Phoenix | No | | | | | | | | | | | Phosphorus | Total P 0.114 mg/l | Phoenix | No | | 0-128 | 4/26/19 | Bacteria | E Coli | | | | (5302-00) | | | 218 MPN/100mls | Phoenix | No | | | | | | | | | | | | Enterococci
1070 MPN/100mls | Phoenix | Yes | | | | | 1070 1417 14/ 10011113 | THOCHIA | 103 | | | | | Fecal Coliform | | | | | | | 98 MPN/100mls | Phoenix | No | | | | | T to location | | | | | | | Total Coliform >24,200 | Phoenix | Yes | | | | | MPN/100mls | HOEHIX | 1.0 | | | | | | | | | | | Nitrogen | Total N 0.971 mg/l | Phoenix | No | | | | Phoenhorus | Total D 0 249 m=/1 | Phoenix | No | | | W. 1 | Phosphorus | Total P 0.248 mg/l | FIIOEIIIX | INO | | | | | | | | | O-128 | 12/9/19 | Bacteria | E Coli | | | | (5302-00) | -, -, | | 384 MPN/100mls | Phoenix | No | | | | | 410 MPN/100mls | ECL | No | | | | | 5.4 | | | | | | | Enterococci | | | | | | | 857 MPN/100mls
1,450 MPN/100mls | Phoenix
ECL | Yes
Yes | |--------------------|----------|------------|-------------------------------------|---------------------------------------|------------| | | | | Fecal Coliform | | | | | | | 189 MPN/100mls | Phoenix | Yes | | | | | 520 MPN/100mls | ECL | Yes | | | | | Total Coliform | | | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | | 21,870 MPN/100mls | ECL | Yes | | | | | Total N 1.30 mg/l | Phoenix | No | | | | Nitrogen | Total P 0.174 mg/l | Phoenix | No | | | | Phosphorus | | · · · · · · · · · · · · · · · · · · · | | | O-129
(5302-00) | 6/18/19 | Bacteria | E Coli
537 MPN/100mls | Phoenix | Yes | | | | | | | | | | | | Enterococci | | 1933 | | | | | 988 MPN/100mls | Phoenix | Yes | | | | | Fecal Coliform
437 MPN/100mls | Phoenix | Yes | | | | | | Phoenix | res | | | | | Total Coliform
24,200 MPN/100mls | Phoenix | Yes | | | | | | | | | | | Nitrogen | Total N 0.44 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 0.047 mg/l | Phoenix | No | | | | | | | | | O-129
(5302-00) | 12/9/19 | Bacteria | E Coli
327 MPN/100mls | Phoenix | No | | (3302-00) | | | 100 MPN/100mls | ECL | No | | | | | Enterococci | | | | | | | 857 MPN/100mls | Phoenix | Yes | | | | | 1,090 MPN/100mls | ECL | Yes | | | | | Fecal Coliform
189 MPN/100mls | Phoenix | Yes | | | | | 300 MPN/100mls | ECL | No | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | >241,960
MPN/100mls | ECL | Yes | | | | Nitrogen | | | No. | | | | Phosphorus | Total N 2.136 mg/l | Phoenix | No | | | | | Total P 0.265 mg/l | Phoenix | No | | 0-132 | 12/21/18 | Bacteria | E Coli | | | | 12,000 MPN/100mls | | | | | | | |--|-----------|------------|------------|--------------------|---------|-----| | Enterococci | (5302-00) | | | | | | | 2,190 MPN/100mls | | | | 7,490 MPN/100mls | ECL | Yes | | Fecal Coliform 1,260 MPN/100mls ECL Yes | | | | | | | | Fecal Coliform 1,260 MPN/100mls 1,100 MPN/100
 | | | | | | | 1,260 MPN/100mls | | | | 630 MPN/100mls | ECL | Yes | | 1,100 MPN/100mls | | | | Fecal Coliform | | | | Total Coliform | | | | | | | | 19,900 MPN/100mls ECL Yes | | | | 1,100 MPN/100mls | ECL | Yes | | 18,600 MPN/100mls ECL Yes | | | | Total Coliform | | | | Nitrogen | | | | | | | | Phosphorus | | | | 18,600 MPN/100mls | ECL | Yes | | Factor F | | | Nitrogen | Total N 0.85 mg/l | Phoenix | No | | 171 MPN/100mls | | | Phosphorus | Total P 0.061 mg/l | Phoenix | No | | 171 MPN/100mls | 0-133 | 6/18/19 | Bacteria | E Coli | (4) | | | Enterococci S54 MPN/100mls 1,630 MPN/100mls 1,630 MPN/100mls ECL Yes | (5320-00) | | | | | | | S54 MPN/100mls | | | | 100 MPN/100mls | ECL | No | | 1,630 MPN/100mls | | | | | | | | Fecal Coliform 158 MPN/100mls Phoenix No 100 MPN/100mls ECL No No Total Coliform >24,200 Phoenix Yes MPN/100mls ECL Yes No MPN/100mls ECL Yes No MPN/100mls ECL Yes No MPN/100mls Phoenix Yes Fecal Coliform 3,650 MPN/100mls Phoenix Yes Total Coliform Colif | | | | | | | | 158 MPN/100mls | | | | 1,630 MPN/100mls | ECL | Yes | | 100 MPN/100mls ECL | | | | Fecal Coliform | | | | Total Coliform | | | | | | | | | | | | 100 MPN/100mls | ECL | No | | MPN/100mls | | | | Total Coliform | | | | 77,010 MPN/100mls ECL Yes Nitrogen Total N 1.19 mg/l Phoenix No Phosphorus Total P 0.135 mg/l Phoenix No Phosphorus E Coli 3,260 MPN/100mls Phoenix No Enterococci 8,660 MPN/100mls Phoenix Yes Fecal Coliform 3,650 MPN/100mls Phoenix Yes Total Coliform >24,200 Phoenix Yes | | | | | Phoenix | Yes | | Nitrogen Phosphorus Total N 1.19 mg/l Phoenix No Total P 0.135 mg/l Phoenix No Bacteria E Coli 3,260 MPN/100mls Phoenix No Enterococci 8,660 MPN/100mls Phoenix Yes Fecal Coliform 3,650 MPN/100mls Phoenix Yes Total Coliform >24,200 Phoenix Yes | | | | | FCI | Voc | | Phosphorus Total P 0.135 mg/l Phoenix No | | | | 77,010 WPW/100MIS | ECL | 163 | | D-134 6/18/19 Bacteria E Coli 3,260 MPN/100mls Phoenix No | | | Nitrogen | Total N 1.19 mg/l | Phoenix | No | | 3,260 MPN/100mls Phoenix No Enterococci 8,660 MPN/100mls Phoenix Yes Fecal Coliform 3,650 MPN/100mls Phoenix Yes Total Coliform >24,200 Phoenix Yes | | | Phosphorus | Total P 0.135 mg/l | Phoenix | No | | 3,260 MPN/100mls Phoenix No Enterococci 8,660 MPN/100mls Phoenix Yes Fecal Coliform 3,650 MPN/100mls Phoenix Yes Total Coliform >24,200 Phoenix Yes | | - 100 to 0 | | F.O. II. | | | | Enterococci 8,660 MPN/100mls Phoenix Yes Fecal Coliform 3,650 MPN/100mls Phoenix Yes Total Coliform >24,200 Phoenix Yes | | 6/18/19 | Bacteria | | Phoenix | No | | 8,660 MPN/100mls Phoenix Yes Fecal Coliform 3,650 MPN/100mls Phoenix Yes Total Coliform >24,200 Phoenix Yes | (3302-00) | | | | | * | | Fecal Coliform 3,650 MPN/100mls Phoenix Yes Total Coliform >24,200 Phoenix Yes | | | | | | V | | 3,650 MPN/100mls Phoenix Yes Total Coliform >24,200 Phoenix Yes | | | | 8,660 MPN/100mis | Pnoenix | Yes | | Total Coliform >24,200 Phoenix Yes | | | | | | | | >24,200 Phoenix Yes | | | | 3,650 MPN/100mls | Phoenix | Yes | | | | | | Total Coliform | | | | MPN/100mls | | | | | Phoenix | Yes | | | | | | MPN/100mls | | | | Nitrogen Total N 1.189 mg/l Phoenix No | | | Nitrogen | Total N 1.189 mg/l | Phoenix | No | | Phosphorus Total P 0.376 mg/l Phoenix Yes | | | Phosphorus | Total P 0.376 mg/i | Phoenix | Yes | | 0.130 | 12/21/10 | Dostario | E Coli | | | |------------|----------|--------------|-----------------------|-----------|------| | 0-138 | 12/21/18 | Bacteria | | Dhaaain | Al- | | (5302-00) | | | 211 MPN/100mls | Phoenix | No | | | | | | | | | | | | Enterococci | | 1883 | | | | | 657 MPN/100mls | Phoenix | Yes | | | | | | | | | | | | Fecal Coliform | | | | | | | 546 MPN/100mls | Phoenix | Yes | | | | | | | | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | | | | | | | Nitrogen | Total N 2.381 mg/l | Phoenix | No | | | | Marogen | 10(4)14 2.3011116/1 | THOCHA | | | | | Phosphorus | Total P 0.35 mg/l | Phoenix | Yes | | | | Pilospilorus | Total P 0.33 mg/1 | FIIOEIIIX | 163 | | | 7 | 0-122 | 02/06/20 | Bacteria | E Coli | | | | Mill River | | | 161 MPN/100mls | Phoenix | No | | | | | 100 MPN/100mls | ECL | No | | | | | | | | | | | | Enterococci | | | | | | | 272 MPN/100mls | Phoenix | No | | | | | 520 MPN/2100mls | ECL | Yes | | | | | 320 1411 14/210011113 | 202 | 163 | | | | | Fecal Coliform | | | | | | | 110 MPN/100mls | Phoenix | No | | | | | | | | | | | | <100 MPN/100mls | ECL | No | | | | | | | | | | | | Total Coliform | | | | | | | 6,870 MPN/100mls | Phoenix | Yes | | | | | 3,990 MPN/100mls | ECL | Yes | | | | | | | | | | | Nitrogen | Total N 1.60 mg/l | Phoenix | No | | | | | J. | | | | | | Phosphorus | Total P 0.121 mg/l | Phoenix | No | | | | | | | | | | | | | | | | 0-124 | 02/06/20 | Bacteria | E Coli | | | | 0-124 | 02/00/20 | Dacteria | L COII | | L | | Mill River | | | 408 MPN/100mls | Phoenix | No | |-----------------|----------|------------|----------------------|---------|-----| | WIIII KIVEI | | | 520MPN/100mls | ECL | Yes | | | | | Enterococci | | | | | | | 1,210 MPN/100mls | Phoenix | Yes | | | | | 960 MPN/100mls | ECL | Yes | | | | | Fecal Coliform | | | | | | | 594 MPN/100mls | Phoenix | Yes | | | | | 100 MPN/100mls | ECL | No | | | | | Total Coliform | | | | | | | 19,900 | Phoenix | Yes | | | | | MPN/100mls
20,460 | ECL | Yes | | | | | MPN/100mls | | | | | | Nitrogen | Total N 7.77 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 0.90 mg/l | Phoenix | Yes | | 0-161 | 03/13/20 | Bacteria | E Coli | | | | New | | | 2,500 MPN/100mls | Phoenix | Yes | | Haven
Harbor | | | 13,140 MPN/100mls | ECL | Yes | | Tiarbot | | | Enterococci | | | | | | | 1,960 MPN/100mls | Phoenix | Yes | | | | | 2,310 MPN/100mls | ECL | Yes | | | | | Fecal Coliform | | | | | | | 1,350 MPN/100mls | Phoenix | Yes | | | | | 860 MPN/100mls | ECL | Yes | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls 57,940 | ECL | Yes | | | | | MPN/100mls | 202 | 103 | | | | Nitrogen | Total N 3.40 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 0.041 mg/l | Phoenix | No | | | | | | | | | 0-162 | 03/13/20 | Bacteria | E Coli | | | | New | | | 74 MPN/100mls | Phoenix | No | | Haven
Harbor | | | 300 MPN/100mls | ECL | No | | | | | Enterococci | | | | | | | 657 MPN/100mls | Phoenix | Yes | | | | | 750 MPN/100mls | ECL | Yes | | | | | Fecal Coliform | | | | | | | 31 MPN/100mls | Phoenix | No | | | | | <100 MPN/100mls | ECL | No | | | | | Total California | | | | | | | Total Coliform | | | | | | | 8,160 MPN/100mls
3,360 MPN/100mls | Phoenix
ECL | Yes
Yes | |------------|------------|------------|--------------------------------------|----------------|------------| | | | Nitrogen | Total N 1.06 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.168 mg/l | Phoenix | No | | | 20 110 100 | | | | | | -162A | 03/13/20 | Bacteria | E Coli | 91 | | | ew | | | 727 MPN/100mls | Phoenix | Yes | | aven | | | 860 MPN/100mls | ECL | Yes | | arbor | | | Contagnosia: | | | | | | | Enterococci | Phoenix | Yes | | | | | 594 MPN/100mls | | | | | | | 11,090 MPN/100mls | ECL | Yes | | | | | Fecal Coliform | | | | | | | 350 MPN/100mls | Phoenix | Yes | | | | | 200 MPN/100mls | ECL | No | | | | | 200 MPN/10011115 | ECL | NO | | | | | Total Coliform | | | | | | | 11,200 MPN/100mls | Phoenix | Yes | | | | | 14,210 NPM/100mls | ECL | Yes | | | | | 14,210 141 14, 1001113 | 202 | | | | | Nitrogen | Total N 1.18 mg/l | Phoenix | No | | | | | a M | | | | | | Phosphorus | Total P 0.067 mg/l | Phoenix | No | | | | | | | | | | | | | 4 | | | | | | | | | |)-44 | 03/19/20 | Bacteria | E Coli | | ., | | Vest River | | | 1,940 MPN/100mls | Phoenix | Yes | | | | 20 | 1,610 MPN/100mls | ECL | Yes | | O-44
West River | 03/19/20 | Bacteria | E Coli 1,940 MPN/100mls 1,610 MPN/100mls Enterococci 776 MPN/100mls 620 MPN/100mls Fecal Coliform 122 MPN/100mls 410 MPN/100mls | Phoenix ECL Phoenix ECL Phoenix ECL | Yes
Yes
Yes
No
Yes | |--------------------|----------|------------------------|---|---------------------------------------|--------------------------------| | | | Nitrogen
Phosphorus | Total Coliform 4,350 MPN/100mls 6,630 MPN/100mls Total N 1.02 mg/l Total P 0.163mg/l | Phoenix ECL Phoenix | Yes
Yes
No | | O-6
West River | 03/19/20 | Bacteria | E Coli
<10MPN/100mls
100 MPN/100mls
Enterococci | Phoenix
ECL | No
No | | | | | 487 MPN/100mls | Phoenix | No | |--------------------|----------|------------|------------------------------------|----------------|-----------| | | | | 1,310 MPN/100mls | ECL | Yes | | | | | Fecal Coliform | | | | | | | <10MPN/100mls | Phoenix | No | | | | | <100 MPN/100mls | ECS | No | | | | | 1200 1011 11/ 10011113 | 203 | 110 | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | 23,100 MPN/100mls | ECL | Yes | | | | Allaurana | Tabel N. O. 71 // | Dhaaniy | Na | | | | Nitrogen | Total N 0.71 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.155 mg/l | Phoenix | No | | -24 | 03/19/20 | Bacteria | E Coli | | | | /est River | -,, | 1 | 86 MPN/100mls | Phoenix | No | | | | | 100 MPN/100mls | ECL | No | | | | | | | | | | | | Enterococci | | | | | | | 141 MPN/100mls | Phoenix | No | | | | | 310 MPN/100mls | ECL | No | | | | | Fecal Coliform | | | | | | | 20 MPN/100mls | Phoenix | No | | | | | 100 MPN/100mls | ECL | No | | | | | | | | | | | | Total Coliform | | | | | | | 19,900 MPN/100mls | Phoenix | Yes | | | | | 15,390 MPN/100mls | ECL | Yes | | | | Nitrogen | Total N 1.16 mg/l | Phoenix | No | | | | | G. | | | | | | Phosphorus | Total P 0.171 mg/l | Phoenix | No | | D-25 | 03/19/20 | Bacteria | E Coli | | | | Vest River | | | 31 MPN/100mls | Phoenix | No | | | | | 100 MPN/100mls | ECL | No | | | | | Enterno const | | | | | | | Enterococci | Phooniy | No | | | | | 455 MPN/100mls
1,830
MPN/100mls | Phoenix
ECL | No
Yes | | | | | 1,030 WEN/ 1001115 | LCL | 163 | | | | | Fecal Coliform | | | | | | | 10 MPN/100mls | Phoenix | No | | | | | <100 MPN/100mls | ECL | No | | | | | Total Coliform | | | | | | | 0 MPN/100mls | Phoenix | No | | | | | 9,060 MPN/100mls | ECL | Yes | | | | | 5,000 1411 147 10011113 | 202 | | | | | Nitrogen | Total N 0.45 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.099mg/l | Phoenix | No | | | | | | | | | O-141
New Haven | 04/24/20 | | E Coli
218 MPN/100mls | Phoenix | No | | Status Harrage | | | TEX MUNICIPALITY | PDOPDIV | INO | | Harbor | | | 200 MPN/100mls | ECL | No | |------------------------------|----------|------------|--------------------------------------|----------------|------------| | | | | Enterococci
187 MPN/100mls | Phoenix | No | | | | | 520 MPN/100mls | ECL | Yes | | | | | Fecal Coliform
131 MPN/100mls | Phoenix | No | | | | | 100 MPN/100mls | ECL | No | | | | | Total Coliform | | | | | | | 4,880 MPN/100mls
6,630 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | 0,030 WII W/ 10011113 | LCL | 163 | | | | | Total N 0.55 mg/l | Phoenix | No | | | | | Total P 0.090mg/l | Phoenix | No | | O-147
New Haven
Harbor | 04/24/20 | Bacteria | E Coli
>24,200
MPN/100mls | Phoenix | Yes | | ria, sor | | | >241,960
MPN/100mls | ECL | Yes | | | | | Enterococci
>24,200
MPN/100mls | Phoenix | Yes | | • | | | >241,960
MPN/100mls | ECL | Yes | | | | | Fecal Coliform | Phoenix | Yes | | | | | MPN/100mls | FC! | Voc | | | | | >241,960
MPN/100mls | ECL | Yes | | | , , | | Total Coliform >24,200 | Phoenix | Yes | | | | Nitrogen | MPN/100mls >241,960 MPN/100mls | ECL | Yes | | | | | Total N 14.01 mg/i | Dhaaniy | Voc | | | | Phosphorus | | Phoenix | Yes | | | | | Total P 1.76 mg/l | Phoenix | Yes | | O-148
New Haven | 04/27/20 | Bacteria | E Coli
393 MPN/100mls | Phoenix | No | | Harbor | | | 1,450 MPN/100mls | ECL. | Yes | | | | | Enterococci
880 MPN/100mls | Phoenix | Yes | | | | | 1,190 MPN/100mls | ECL | Yes | | | | | Fecal Coliform
355 MPN/100mls | Phoenix | Yes | | | | | 310 MPN/100mls | ECL | Yes | | | | | Total Coliform | | | |-------------|----------|------------|-------------------------|----------|-----| | | | | 19,900 MPN/100mls | Phoenix | Yes | | | | | 36,540 MPN/100mls | ECL | Yes | | | | | | | | | | | | Total N 1.40 mg/l | Phoenix | No | | | | | 10ta11V 1.40111g/1 | PHOEIIIX | IVO | | | | | | | | | | | Nitrogen | Total P 0.026 mg/l | Phoenix | No | | | | | | | | | | | Phosphorus | | | | | | | | | | | | 156 | 00/44/20 | D. A. de | E Celi | | | | D-156 | 06/11/20 | Bacteria | E Coli | | | | New Haven | | | <10 MPN/100mls | Phoenix | No | | larbor | | | 200 MPN/100mls | ECL | No | | | | | | | | | | | | Enterococci | | | | | | | 2,050 MPN/100mls | Phoenix | Yes | | | | | | | | | | | | 100 MPN/100mls | ECL | No | | | | | | | | | | | | Fecal Coliform | | | | | | | <10 MPN/100mls | Phoenix | No | | | | | <100 MPN/100mls | ECL | No | | | | | <100 WIF 14/ 10011113 | LCL | 140 | | | | | | | | | | | | Total Coliform | | | | | | | 373 MPN/100mls | Phoenix | No | | | | | 2,130 MPN/100mls | ECL | Yes | | | | | _, | | | | | | Alibusasas | T-4-1 N 10 45 // | Dhaaniu | Voc | | | | Nitrogen | Total N 19.45 mg/l | Phoenix | Yes | | | | | | | | | | | Phosphorus | Total P 0.420 mg/l | Phoenix | Yes | | | | | | | | | | | | | | | | | | | 5.0.1 | | | | 0-15 | 10/02/20 | Bacteria | E Coli | | | | Wintergreen | | | >24,200 | Phoenix | Yes | | Brook | | | MPN/100mls | | Yes | | | | | 5,790 MPN/100mls | ECL | | | | | | 3,730 1411 117 10011113 | 202 | | | | | | | | | | | | | Enterococci | | | | | | | 24,200 MPN/100mls | Phoenix | Yes | | | | | 19,500 MPN/100mls | | | | | | | | ECL | Yes | | | | | Fecal Coliform | | 1 | | | | | | | | | | | | >24,200 | | | | | | | MPN/100mls | | | | | | | 198,630 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | 1111 11, 20011113 | ECL | Yes | | | | | T-4-10 25 | ECL | 163 | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | | IALLIA TOOLIII2 | | | | | | | | | | | | | | Total N 6.79 mg/l | Phoenix | Yes | | | | | | | | | | | Nitrogen | Total P 1.09 mg/l | Phoenix | Yes | | | | | | | | | | | | | | | | | | Phosphorus | | | | | 1.0 | 10/02/20 | Doctorio | E Coli | | | |-------------|------------|--------------|-------------------------|---------|-----| | -16 | 10/02/20 | Bacteria | | Dhoosin | Vac | | intergreen | | | 987 MPN/100mls | Phoenix | Yes | | ook | | | 750 MPN/100mls | ECL | Yes | | | | | | | | | | | | Enterococci | | | | | | | 8,160 MPN/100mls | Phoenix | Yes | | | | | 3,830 MPN/100mls | ECL | Yes | | | | | 3,830 1411 14/ 10011113 | CCL | 163 | | | | | e louis | | | | | | | Fecal Coliform | | | | | | | 2,600 MPN/100mls | Phoenix | Yes | | | | | 3,010 MPN/100mls | ECL | Yes | | | | | | | | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | | ECI | Voc | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | | | | | | | | Nitrogen | Total N 2.49 mg/l | Phoenix | No | | | | | | | | | | | Phosphorus | Total P 0.254 mg/l | Phoenix | No | | | | , nospilorus | 101011 01204 1118/1 | | | | | 40 400 400 | | F C-1: | | | |)-21 | 10/02/20 | Bacteria | E Coli | | V | | Vintergreen | | | 10,500 MPN/100mls | Phoenix | Yes | | rook | | | 6,200 MPN/100mls | ECL | Yes | | | | | | | | | | | | Enterococci | | | | | | | 6,870 MPN/100mls | Phoenix | Yes | | | | | 4,710 MPN/100mls | ECL | Yes | | | | | 4,/10 WPN/100mis | ECL | 163 | | | | | | | | | | | | Fecal Coliform | | | | | | | 19,900 MPN/100mls | Phoenix | Yes | | | | | 41,060 MPN/100mls | ECL | Yes | | | | | | | | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | | THOCHIA | | | | | | MPN/100mls | 501 | Vos | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | | | | | | | | | Total N 1.38 mg/l | Phoenix | No | | | | | 3, | | | | | | | Total P 0.291 mg/l | Phoenix | No | | | | | TOTAL F 0.231 Hig/I | THOCHIA | 110 | | | | | | | | | | | Nitrogen | | | | | | | | | | | | | | Phosphorus | | | | | | | · · | | | | | O-60A | 10/29/20 | Bacteria | E Coli | | | | | 10/23/20 | Dacteria | 12,000 MPN/100mls | Phoenix | Yes | | Wintergreen | | | | | | | Brook | | | 16,070 MPN/100mls | ECL | Yes | | | | | | | | | | | | Enterococci | | | | | | | 19,900 MPN/100mls | Phoenix | Yes | | | | | | ECL | Yes | | | | | 3[] /b() MPN/ Hillimic | | | | | | | 30,760 MPN/100mls | ECL | 163 | | | | | 19,900 MPN/100mls
13,960 MPN/100mls | Phoenix
ECL | Yes
Yes | | |--------------------|----------|------------|---|----------------|------------|--| | | | | Total Coliform
>24,200MPN/100mls
51,720 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | Nitrogen | Total N 0.77 mg/l | Phoenix | No | | | | | Phosphorus | Total P 0.051 mg/l | Phoenix | No | | | O-45
West River | 10/29/20 | Bacteria | E Coli
4,610 MPN/100mls
3,450 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | | Enterococci
>24,200
MPN/100mls
22,470 MPN/100mls | Phoenix | Yes
Yes | | | | | | Fecal Coliform
8,660 MPN/100mls
3,590 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | | Total Coliform >24,200 | Phoenix | Yes | | | | | | MPN/100mls
>241,960
MPN/100mls | ECL | Yes | | | | | Nitrogen | Total N 1.21 mg/l | Phoenix | No | | | | | Phosphorus | Total P 0.110 mg/l | Phoenix | No | | | 0-25 | 10/29/20 | Bacteria | E Coli | | | |------|----------|------------|-----------------------|---------|-----| | Vest | | | 5,790 MPN/100mls | Phoenix | Yes | | iver | | | 5.730 MPN/100mls | ECL | Yes | | | | | Enterococci | | | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | | 38,730 MPN/100mls | ECL | Yes | | | | | Fecal Coliform | | | | | | | 15,500 MPN/100mls | Phoenix | Yes | | | | | 5,730 MPN/100mls | ECL | Yes | | | | | Total Coliform | | | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | 1 1 | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | Nitrogen | Total N 24.57 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 4.40 mg/l | Phoenix | Yes | | O-26
West | 10/29/20 | Bacteria | E Coli
>24,200 | Phoenix | Yes | |--------------|----------|------------|---------------------------------|-------------|-----| | liver | | | MPN/100mls
41,060 MPN/100mls | ECL | Yes | | | | | Enterococci
>24,200 | Phoenix | Yes | | | | | MPN/100mls
86,640 MPN/100mls | ECL | Yes | | | | | Fecal Coliform | Observation | Wa- | | | | | 24,200
MPN/100mls | Phoenix | Yes | | | | | 19,350 MPN/100mls | ECL | Yes | | | | | Total Coliform >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | >241,960
MPN/100mls | ECL | Yes | | | | Nitrogen | Total N 0.98 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.281 mg/l | Phoenix | No | | O-61
Winter | 04/15/21 | Bacteria | E Coli
>24,200 | Phoenix | Yes | |-----------------|----------|------------|------------------------|----------|-----| | Green | | | MPN/100mls | THOUSEN. | | | Brook | | | 98,040 MPN/100mls | ECL | Yes | | | | | Enterococci | | | | | | | Not analyzed | Phoenix | | | | | | 81,640 MPN/100mls | ECL | Yes | | | | | Fecal Coliform | | | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | | 68,670 MPN/100mls | ECL | Yes | | | - | | Tatal California | | | | | | | Total Coliform >24,200 | | | | | | | MPN/100mls | Phoenix | Yes | | | | | 241,960
MPN/100mls | ECL | Yes | | | | Nitrogen | Total N 4.43 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 0.497 mg/l | Phoenix | Yes | | 0-62 | 04/15/21 | Bacteria | E Coli | | | | Winter
Green | | | >24,200
MPN/100mls | Phoenix | Yes | | Brook | | | >241,960 | ECL | Yes | | _, | | | MPN/100mls | | | | | | | | | Enterococci | | | | | |-------------------|----------|----------|------------------------|--------------------------------------|--|---------|--------------------|-----
-----| | | | | | | Not analyzed >241,960 MPN/100mls | | Phoenix
ECL | | Yes | | | | | | | Fecal Colifor
>24,200
MPN/100ml:
19,350 MPN | m
s | Phoenix
ECL | | Yes | | | | | | | Total Colifor | | | | | | | | | | | >24,200
MPN/100ml
>241,960 | s | Phoenix
ECL | | Yes | | | | | | | MPN/100ml | | | | | | | | | Nitrogen
Phosphorus | | Total N 53. | | Phoenix
Phoenix | | Yes | | | 0/04/40 | | | | 10(4)1 3.3 | | | | 163 | | 0-180
5200-00) | 6/21/18 | Bacteria | | E. coli
616 MF | PN/100mls | Phoenix | | Yes | | | | | | | Enterococci
>24,200
MPN/100mls | | Phoenix | | Yes | | | | | | | | oliform
PN/100mls | Phoenia | t and the second | Yes | | | | | | | Total C
>24,20
MPN/1 | | Phoenix | | Yes | | | | | Nitroge | n | Total N | 3.08 mg/l | Phoeni | (| Yes | | | | | Phosph | orus | Total P | 0.123 mg/l | Phoeni | • | No | | |)-119 | 6/28/18 | Bacteria | 9 | E.Coli | | Phoeni | < | Yes | | | 5305-00) | | | | Entero | MPN/100mls
cocci
MPN/100mls | Phoeni | (| Yes | | | | | | | | Fecal Coliform
4,110 MPN/100mls | | Phoenix Y | | | | | | | | Total C
>242,0
MPN/1 | | Phoeni | × | Yes | | | | | Nitroge | en . | Total N | l 3.48 mg/l | Phoeni | x | Yes | | | | | Phosph | orus | Total P | 0.545 mg/l | Phoeni | x | Yes | | | 0-11 | 11/13/18 | Bacteri | a | E Coli | | | | | | | | 609 MPN/100mls | Phoenix | Yes | |------------|--------------------|---|---| | | 200 MPN/100mls | ECL | | | | Enterococci | | | | | | Phoenix | Yes | | | 310 MPN/100mls | ECL | | | | Fecal Coliform | | | | | 383 MPN/100mls | Phoenix | Yes | | | 300 MPN/100mls | ECL | | | | Total Coliform | | | | | 17,300 MPN/100mls | Phoenix | Yes | | | 17,250 MPN/100mls | ECL | | | Nitrogen | Total N 0.66 mg/l | Phoenix | No | | Phosphorus | Total P 0.076 mg/i | Phoenix | No | | | | Enterococci 602 MPN/100mls 310 MPN/100mls Fecal Coliform 383 MPN/100mls 300 MPN/100mls Total Coliform 17,300 MPN/100mls 17,250 MPN/100mls Total N 0.66 mg/l | Enterococci 602 MPN/100mls Phoenix 310 MPN/100mls ECL Fecal Coliform 383 MPN/100mls Phoenix 300 MPN/100mls Phoenix 17,300 MPN/100mls ECL Total Coliform 17,300 MPN/100mls Phoenix 17,250 MPN/100mls ECL Nitrogen Total N 0.66 mg/l Phoenix | | 0-7 | 11/13/18 | Bacteria | E Coli | | | |-----------|----------|--------------|-----------------------|-----------|-----| | (5305-00) | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | 241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | a. | Enterococci | | | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | | | | | | | | | Fecal Coliform | 117 7 | | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | | 48,840 MPN/100mls | ECL | Yes | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | , | | Nitrogen | Total N 14.69 mg/l | | | | | | Phosphorus | Total P 1.34 mg/l | Phoenix | Yes | | | | Pilospilorus | 10tai r 1.54 mg/i | Phoenix | Yes | | | | | | FIIOCITIX | 163 | | | | | | | | | 0-10 | 12/28/18 | Bacteria | E Coli | | | | (5305-00) | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls >241,960 | ECL | Yes | | | | | MPN/100mls | ECL | Tes | | | | | Enterococci | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | |------------------|----------|------------------------|--|-------------------------------------|-------------------| | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | | | | | | | | | Fecal Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | | | | | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | THOCHIA | 163 | | | | | >241,960 | ECL | Yes | | | | | | ECL | 163 | | | | | MPN/100mls | | | | | | | | pl | V | | | | Nitrogen | Total N 16.67 mg/l | Phoenix | Yes | | | | | | | | | | | Phosphorus | Total P 1.76 mg/l | Phoenix | Yes | 0-12 | 11/13/18 | Bacteria | E Coli | | | | (5305-00) | | www.tuttu | 5,480 MPN/100mls | Phoenix | Yes | | (3303-00) | | | 5,040 MPN/100mls | ECL | Yes | | | | | 3,040 1411 14/ 10011113 | CCC | 163 | | | | | Enterococci | | | | | | | 5,170 MPN/100mls | Phoenix | Yes | | | | | | | | | | | | 6,770 MPN/100mls | ECL | Yes | | | | | - 10.116 | | | | | | | Fecal Coliform | | L. | | | | | 1,860 MPN/100mls | Phoenix | Yes | | | | | 1,560 MPN/100mls | ECL | Yes | | | | | | | | | | | | | | | | | | | Total Coliform | | | | | | | Total Coliform >24,200 | Phoenix | Yes | | | | | | Phoenix | Yes | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | | >24,200
MPN/100mls
198,630 | | Yes | | | | | >24,200
MPN/100mls | Phoenix | | | | | | >24,200
MPN/100mls
198,630
MPN/100mls | | | | | | Nitrogen | >24,200
MPN/100mls
198,630 | ECL | Yes | | | | Nitrogen | >24,200
MPN/100mls
198,630
MPN/100mls
Total N 0.44 mg/l | | | | | | | >24,200
MPN/100mls
198,630
MPN/100mls | ECL
Phoenix | Yes | | | | Nitrogen
Phosphorus | >24,200
MPN/100mls
198,630
MPN/100mls
Total N 0.44 mg/l | ECL | Yes | | | 42/20/42 | Phosphorus | >24,200
MPN/100mls
198,630
MPN/100mls
Total N 0.44 mg/l
Total P 0.229 mg/l | ECL
Phoenix | Yes | | 013 | 12/28/18 | | >24,200
MPN/100mls
198,630
MPN/100mls
Total N 0.44 mg/l
Total P 0.229 mg/l | ECL Phoenix Phoenix | Yes
No
No | | O13
(5305-00) | 12/28/18 | Phosphorus | >24,200
MPN/100mls
198,630
MPN/100mls
Total N 0.44 mg/l
Total P 0.229 mg/l
E Coli
>24,200 | ECL
Phoenix | Yes | | | 12/28/18 | Phosphorus | >24,200
MPN/100mls
198,630
MPN/100mls
Total N 0.44 mg/l
Total P 0.229 mg/l
E Coli
>24,200
MPN/100mls | ECL Phoenix Phoenix Phoenix | Yes No No Yes | | | 12/28/18 | Phosphorus | >24,200
MPN/100mls
198,630
MPN/100mls
Total N 0.44 mg/l
Total P 0.229 mg/l
E Coli
>24,200
MPN/100mls
>241,960 | ECL Phoenix Phoenix | Yes
No
No | | | 12/28/18 | Phosphorus | >24,200
MPN/100mls
198,630
MPN/100mls
Total N 0.44 mg/l
Total P 0.229 mg/l
E Coli
>24,200
MPN/100mls | ECL Phoenix Phoenix Phoenix | Yes No No Yes | | | 12/28/18 | Phosphorus | >24,200
MPN/100mls
198,630
MPN/100mls
Total N 0.44 mg/l
Total P 0.229 mg/l
E Coli
>24,200
MPN/100mls
>241,960 | ECL Phoenix Phoenix Phoenix | Yes No No Yes | | | 12/28/18 | Phosphorus | >24,200
MPN/100mls
198,630
MPN/100mls
Total N 0.44 mg/l
Total P 0.229 mg/l
E Coli
>24,200
MPN/100mls
>241,960 | ECL Phoenix Phoenix Phoenix ECL | Yes No No Yes | | | 12/28/18 | Phosphorus | >24,200 MPN/100mls 198,630 MPN/100mls Total N 0.44 mg/l Total P 0.229 mg/l E Coli >24,200 MPN/100mls >241,960 MPN/100mls | ECL Phoenix Phoenix Phoenix | Yes No No Yes | | | 12/28/18 | Phosphorus | >24,200 MPN/100mls 198,630 MPN/100mls Total N 0.44 mg/l Total P 0.229 mg/l E Coli >24,200 MPN/100mls >241,960 MPN/100mls Enterococci >24,200 | ECL Phoenix Phoenix Phoenix ECL | Yes No No Yes Yes | | | 12/28/18 | Phosphorus | >24,200 MPN/100mls 198,630 MPN/100mls Total N 0.44 mg/l Total P 0.229 mg/l E Coli >24,200 MPN/100mls >241,960 MPN/100mls Enterococci >24,200 MPN/100mls | ECL Phoenix Phoenix ECL Phoenix | Yes No No Yes Yes | | | 12/28/18 | Phosphorus | >24,200 MPN/100mls 198,630 MPN/100mls Total N 0.44 mg/l Total P 0.229 mg/l E Coli >24,200 MPN/100mls >241,960 MPN/100mls | ECL Phoenix Phoenix Phoenix | Yes No No Yes | | | 12/28/18 | Phosphorus | >24,200 MPN/100mls 198,630 MPN/100mls Total N 0.44 mg/l Total P 0.229 mg/l E Coli >24,200 MPN/100mls >241,960 MPN/100mls Enterococci >24,200 MPN/100mls | ECL Phoenix Phoenix ECL Phoenix | Yes No No Yes Yes | | | 12/28/18 | Phosphorus | >24,200 MPN/100mls 198,630 MPN/100mls Total N 0.44 mg/l Total P 0.229 mg/l E Coli >24,200 MPN/100mls >241,960 MPN/100mls Enterococci >24,200 | ECL Phoenix Phoenix Phoenix ECL | Yes No No Yes Yes | | | | Nitrogen | Fecal Coliform >24,200 MPN/100mls 155,310 MPN/100mls Total Coliform >24,200 MPN/100mls >241,960 MPN/100mls Total N 17.49mg/l | Phoenix ECL Phoenix ECL Phoenix | Yes Yes Yes Yes | |-------------------|----------|------------|---|---------------------------------|-----------------| | | | Phosphorus | Total P 2.02mg/l | Phoenix | Yes | | | | | | | | | | | | | | | | O-41
(5305-00) | 12/28/18 | Bacteria | E Coli
>24,200
MPN/100mls | Phoenix | Yes | | | | | >241,960
MPN/100mls | ECL | Yes | | | | | Enterococci
>24,200
MPN/100mls | Phoenix | Yes | | | | | 92,080
MPN/100mls | ECL | Yes | | | | | Fecal Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | >241,960
MPN/100mls | ECL | Yes | | | | | Total Coliform >24,200 | Phoenix | Yes | | | | | MPN/100mls
>241,960
MPN/100mls | ECL | Yes | | | | Nitrogen | Total N 11.49 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 1.33 mg/l | Phoenix | Yes | | 0.46 | 12/21/10 | Ractoria | E Coli | | | | O-46
(5305-00) | 12/21/18 | Bacteria | 637 MPN/100mls
410 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | Enterococci
2,280 MPN/100mls | Phoenix | Yes | | | | | 1,990MPN/100mls | ECL | Yes | | | | | Fecal Coliform
197 MPN/100mls | Phoenix | Yes | | | | | 200 MPN/100mls
| ECL | Yes | |-------------------|----------|------------|--|----------------|------------| | | | | Total Coliform
9,800 MPN/100mls
8,420 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | Nitrogen | Total N 0.42 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.13 mg/l | Phoenix | No | | O-47
(5305-00) | 12/21/18 | Bacteria | E Coli
9,140 MPN/100mls
3,360 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | Enterococci
3,870 MPN/100mls
1,580 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | Fecal Coliform
5,170 MPN/100mls
1,610 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | Total Coliform
10,100 MPN/100mls
13,540 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | Nitrogen | Total N 0.72 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.161 mg/l | Phoenix | No | | 0-57 | 12/28/18 | Bacteria | E Coli | | | | (5305-00) | 12,20,10 | bucceriu | >24,200
MPN/100mls | Phoenix | Yes | | | | | >241,960
MPN/100mls | ECL | Yes | | | | | Enterococci
>24,200
MPN/100mls | Phoenix | Yes | | | | | >241,960
MPN/100mls | ECL | Yes | | | | | Fecal Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | >241,960
MPN/100mls | ECL | Yes | | | | | Total Coliform >24,200 MPN/100mls | Phoenix | Yes | | | | | >241,960
MPN/100mls | ECL | Yes | | | | Nitrogen | Total N 32.24 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 4.09 mg/l | Phoenix | Yes | | -58
305-00) | 12/28/18 | Bacteria | E Coli
>24,200 | Phoenix | Yes | |----------------|----------|------------|--------------------|---------|-----| | 303 001 | | | MPN/100mls | | | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | | Enterococci | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | 81,640 | ECL | Yes | | | | | MPN/100mls | | | | | | | A Company | | | | | | | Fecal Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | 501 | | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | >241,960 | ECL | Yes | | | | | MPN/100mls | | | | | | Nitrogen | Total N 26.01 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 2.96 mg/l | Phoenix | Yes | | | | E Coli | | | |----------|------------|--------------------|---|---| | | | 3,080 MPN/100mls | Phoenix | Yes | | | | 2,350 MPN/100mls | ECL | Yes | | | | | | | | | | | | | | | | | | Yes | | | | 1,350 MPN/100mls | ECL | Yes | | | | | | | | | | | | | | | | | | Yes | | | | 1,610 MPN/100mls | ECL | Yes | | | | | | | | | | | | | | | | | Phoenix | Yes | | | | | | | | | | | ECL | Yes | | | | MPN/100mls | | | | | | | | | | | Nitrogen | Total N 0.49 mg/l | Phoenix | No | | | | | | | | | Phosphorus | Total P 0.182 mg/l | Phoenix | No | | 12/28/18 | Bacteria | E Coli | | | | | | 30 MPN/100mls | Phoenix | No | | | | 100 MPN/100mls | ECL | No | | | | Entoropool | | | | | 12/28/18 | Phosphorus | Enterococci 2,190 MPN/100mls 1,350 MPN/100mls 1,350 MPN/100mls Fecal Coliform 1,480 MPN/100mls 1,610 MPN/100mls Total Coliform >24,200 MPN/100mls 61,310 MPN/100mls 61,310 Total N 0.49 mg/l Phosphorus Total P 0.182 mg/l 12/28/18 Bacteria E Coli 30 MPN/100mls | Enterococci 2,190 MPN/100mls 1,350 MPN/100mls 1,350 MPN/100mls 1,480 MPN/100mls 1,610 MPN/100mls 1,610 MPN/100mls ECL Total Coliform >24,200 MPN/100mls 61,310 MPN/100mls 61,310 MPN/100mls FCL Nitrogen Total N 0.49 mg/l Phoenix Phoenix Phoenix ECL | | | | | 249 MPN/100mls
8,600 MPN/100mls | Phoenix
ECL | No
Yes | |-------------------|----------|------------|---|----------------|-----------| | | | | Fecal Coliform | | | | | | | 20 MPN/100mls
100 MPN/100mls | Phoenix
ECL | No
No | | | | | Total Coliform
13,000
MPN/100mls | Phoenix | Yes | | | | | 5,810
MPN/100mls | ECL | Yes | | | | Nitrogen | Total N 0.95 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.07 mg/l | Phoenix | No | | 0-81 | 6/18/19 | Bacteria | E Coli | | | | (5305-00) | 0,10,13 | Bucconu | 2,060 MPN/100mls | Phoenix | Yes | | | | | Enterococci
9,210 MPN/100mls | Phoenix | Yes | | | | | Fecal Coliform
934 MPN/100mls | Phoenix | Yes | | | | | Total Coliform >24,200 MPN/100mls | Phoenix | Yes | | | | Nitrogen | Total N 0.76 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.072 mg/l | Phoenix | No | | O-87
(5305-00) | 12/28/18 | Bacteria | E Coli
30 MPN/100mls
100 MPN/100mls | Phoenix
ECL | No
No | | | | | Enterococci
249 MPN/100mls
8,600 MPN/100mls | Phoenix
ECL | No
Yes | | | | | Fecal Coliform 20 MPN/100mls 100 MPN/100mls | Phoenix
ECL | No
No | | | | | Total Coliform
13,000 | Phoenix | Yes | | | | | MPN/100mls
5,810
MPN/100mls | ECL | Yes | | | | Nitrogen | Total N 24.37 mg/l | Phoenix | No | | | | Phosphorus | Total P 0.07 mg/l | Phoenix | No | | 00 | 12/20/10 | Pactoria | E Coli | | | |--------------------|------------|----------------|--------------------------------------|--------------------|-----| | 0-88 | 12/28/18 | Bacteria | | Dhooniy | Vos | | 5305-00) | | | 591 MPN/100mls | Phoenix | Yes | | | | | 520 MPN/100mls | ECL | Yes | | | | | | | | | | | | Enterococci | | | | | | | 471 MPN/100mls | Phoenix | Yes | | | | | 1,100 MPN/100mls | ECL | Yes | | | | | 2,200 1111 11, 20011113 | 1 | | | | | | Facal California | | | | | | | Fecal Coliform | -1 | | | | | | 637 MPN/100mls | Phoenix | Yes | | | | | 200 MPN/100mls | ECL | Yes | | | | | | | | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | | | | | | | | r.c. | Vac | | | | | 30,760 | ECL | Yes | | | | | MPN/100mls | | | | | | | | | | | | | Nitrogen | Total N 0.826 mg/l | Phoenix | Yes | | | | | | | | | | | Phosphorus | Total P 0.105 mg/l | Phoenix | No | | | | | | | | | | | | | | | | D-89 | 12/21/18 | Bacteria | E Coli | | | | | 75/ 51/ 10 | Dacteria | 7,700 MPN/100mls | Phoenix | Yes | | 5305-00) | | | | | | | | 17. | | 9,590 MPN/100mls | ECL | Yes | | | | | | | | | | | | Enterococci | | | | | | | 5,480 MPN/100mls | Phoenix | Yes | | | | | 5,540 MPN/100mls | ECL | Yes | | | | | 0,0 10 1111 11, 20011110 | | | | | | | Fecal Coliform | | | | | | | | Dhaanin | Vos | | | | | 2,610 MPN/100mls | Phoenix | Yes | | | | | 2,980 MPN/100mls | ECL | Yes | | | | | | | | | | | | Total Coliform | | | | | | | >24,200 | Phoenix | Yes | | | | | MPN/100mls | · Hoelin | | | | | | | F.C1 | Vee | | | | | 46,110 | ECL | Yes | | | | | MPN/100mls | | | | | | | | | | | | | Nitrogen | Total N 0.72 mg/l | Phoenix | No | | | | | | | | | | | Phosphorus | Total P 0.133 mg/l | Phoenix | No | | | | 1 1105pilot us | 40/04/45 | | E C-II | | | | | 12/21/18 | Bacteria | E Coli | | | | | | | >24,200 | Phoenix | Yes | | | | | A 4DAL /4 00 l- | | | | | | | MPN/100mls | | | | | | | MPN/100mis | | | | O-121
(5302-00) | | | | | | | | | | Enterococci | Phooniv | Vec | | | | | Enterococci
>24,200 | Phoenix | Yes | | | | | Enterococci | Phoenix | Yes | | | | | Enterococci
>24,200
MPN/100mls | Phoenix | Yes | | | | | Enterococci
>24,200 | Phoenix
Phoenix | Yes | | | | | MPN/100mls | | | |---------------------|---------|------------|---|---------|-----| | | | | Total Coliform >24,200 MPN/100mls | Phoenix | Yes | | | | Nitrogen | Total N 26.94 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 4.0 mg/l | Phoenix | Yes | | 0-122
(5302-00) | 4/26/19 | Bacteria | E Coli
7,270 MPN/100mls | Phoenix | Yes | | | | | Enterococci
3,080 MPN/100mls | Phoenix | Yes | | | | | Fecal Coliform
4,880 MPN/100mls | Phoenix | Yes | | | | | Total Coliform | | | | | | | >24,200
MPN/100mls | Phoenix | Yes | | | | Nitrogen | Total N 3.77 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 0.40 mg/l | Phoenix | Yes | | O-124
(5302-00) | 4/26/19 | Bacteria | E Coli
>24,200
MPN/100mls | Phoenix | Yes | | | | | Enterococci
4,610 MPN/100mls | Phoenix | Yes | | | | | Fecal Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | Total Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | Nitrogen | Total N 78.95 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 8.51 mg/l | Phoenix | Yes | | O-124X
(5302-00) | 4/26/19 | Bacteria | E Coli
216 MPN/100mls | Phoenix | No | | | | | Enterococci
134 MPN/100mls | Phoenix | No | | | | | Fecal Coliform
395 MPN/100mls | Phoenix | Yes | | | | | Total Coliform
19,900 MPN/100mls | Phoenix | Yes | |--------------------|---------|------------|--|----------------|------------| | | | Nitrogen | Total N 2.623 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 0.196 mg/l | Phoenix | no | | O-125
(5302-00) | 4/26/19 | Bacteria | E Coli
10 MPN/100mls | Phoenix | No | | | | | Enterococci
61 MPN/100mls | Phoenix | no | | | | | Fecal Coliform
10 MPN/100mls | Phoenix | Yes | | | | | Total Coliform
934 MPN/100mls | Phoenix | Yes | | | | Nitrogen | Total N 1.13 mg/l | Phoenix | Yes | | | | Phosphorus | Total P 0.067 mg/l | Phoenix | Yes | | O-126
(5302-00) | 4/26/19 | | E Coli
>24,200
MPN/100mls | Phoenix | Yes | | | | | Enterococci
>24,200
MPN/100mls | Phoenix | Yes | | | | | Fecal Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | Total
Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | Total N 26.94 mg/l | Phoenix | Yes | | | | | Total P 4.00 mg/l | Phoenix | Yes | | O-126
(5302-00) | 12/9/19 | Bacteria | E Coli
2,600 MPN/100mls
2,750 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | Enterococci
>24,200
MPN/100mls
111,990 | Phoenix
ECL | Yes | | | | | MPN/100mls | | | | | | | Fecal Coliform
1,080 MPN/100mls
2,130 MPN/100mls | Phoenix
ECL | Yes
Yes | | | | | Total Coliform
>24,200
MPN/100mls | Phoenix | Yes | | |--------------------|---------|------------|---|---------|-----|--| | | | | >241,960
MPN/100mls | ECL | Yes | | | | | Nitrogen | Total N 4.014 mg/l | Phoenix | Yes | | | | | Phosphorus | Total P 0.812 mg/l | Phoenix | Yes | | | 0-127 | 4/26/19 | Bacteria | E Coli
703 MPN/100mls | Phoenix | Yes | | | | | | Enterococci
1,170 MPN/100mls | Phoenix | Yes | | | | | | Fecal Coliform
24,200 MPN/100mls | Phoenix | No | | | | | | Total Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | Nitrogen | Total N 2.445 mg/l | Phoenix | No | | | | | Phosphorus | Total P 0.114 mg/l | Phoenix | No | | | O-128
(5302-00) | 4/26/19 | Bacteria | E Coli
218 MPN/100mls | Phoenix | No | | | | | | Enterococci
1070 MPN/100mls | Phoenix | Yes | | | | | | Fecal Coliform
98 MPN/100mls | Phoenix | No | | | | | | Total Coliform
>24,200
MPN/100mls | Phoenix | Yes | | | | | Nitrogen | Total N 0.971 mg/l | Phoenix | No | | | | | Phosphorus | Total P 0.248 mg/l | Phoenix | No | | | | | | | | | | Due to the size of this document computer glitches have occurred in preparing it. For 2022 water testing results please refer to Appendix 1. It is hoped this problem can be resolved before the final report is published in April 2023. #### 2.2 Credit for screening data collected under 2004 permit If any outfalls to impaired waters were sampled under the 2004 MS4 permit, that data can count towards the monitoring requirements under the modified 2017 MS4 permit. Complete the table below to record sampling data for any outfalls to impaired waters under the 2004 MS4 permit. | Outfall | Sample date | Parameter (Nitrogen,
Phosphorus, Bacteria,
or Other pollutant of
concern) | Results | Name of
Laboratory (if
used) | Follow-up required? | |--------------------|--|--|---|------------------------------------|---------------------| | O-70
(5305-00) | Various dates
between 2005
and 2016. | Bacteria E-coli
15 samples in total | Best 60
Worst 25,994
Average 6,336
(MPN/100mls) | Various Labs | Yes | | | | Total Nitrogen 13 samples in total | Best 1.22
Worst 5.36
Average 2.46
(mg/l) | | | | | | Total Phosphorus
13 samples in total | Best 0
Worst 0.42
Average 0.19
(mg/l) | | | | O-109
(5000-48) | Various dates
between 2005
and 2016. | Bacteria E-coli
14 samples in total | Best 228
Worst 30,100
Average 4,815
(MPN/100mls) | Various Labs | Yes | | | | Total Nitrogen 13 samples in total | Best 1.66
Worst 6.25
Average 3.09
(mg/l) | | | | | | Total Phosphorus
13 samples in total
Nitrogen | Best 0
Worst 0.90
Average 0.44
(mg/l) | | | | O-147
(5000-48) | Various dates
between 2005
and 2016. | Bacteria E-coli
15 samples in total | Best 4
Worst 29,700
Average 5,100
(MPN/100mls) | Various Labs | Yes | | | | Total Nitrogen 13 samples in total | Best 0.16
Worst 6.13
Average 3.12
(mg/l) | | | | | | Total Phosphorus
13 samples in total
Nitrogen | Best 0
Worst 3.6
Average 0.54
(mg/l) | | | | O-156
(5200-00) | Various dates
between 2005
and 2016 | Bacteria E-coli
15 samples in total | Best 10
Worst >24,200
Average 3,051
(MPN/100mls) | Various Labs | Yes | | | | Total Nitrogen 13 samples in total | Best 0.0
Worst 26.45
Average 4.30
(mg/l) | | | |--------------------|---|---|---|--------------|-----| | | | Total Phosphorus
13 samples in total
Nitrogen | Best 0.08
Worst 1.70
Average 0.72
(mg/l) | | | | O-249
(5200-00) | Various dates
between 2005
and 2016 | Bacteria E-coli
15 samples in total | Best 90
Worst 36,100
Average 4,497
(MPN/100mls) | Various Labs | Yes | | | | Total Nitrogen
13 samples in total | Best 0.22
Worst 4.47
Average 2.30
(mg/l) | | | | | | Total Phosphorus
13 samples in total
Nitrogen | Best 0.11
Worst 2.57
Average 0.59
(mg/l) | | | | 0-253
(5200-00) | Various dates
between 2005
and 2016 | Bacteria E-coli
15 samples in total | Best 10
Worst >24,200
Average 5,888
(MPN/100mls) | Various Labs | Yes | | | | Total Nitrogen
13 samples in total | Best 0.19
Worst 4.47
Average 3.04
(mg/l) | | | | | | Total Phosphorus
13 samples in total
Nitrogen | Best 0.0
Worst 0.66
Average 0.30
(mg/l) | | | ## 3. Follow-up investigations (Section 6(i)(1)(D) / page 43) Provide the following information for outfalls exceeding the pollutant threshold. | Outfall | Status of drainage area investigation | Control measure implementation to address impairment | |--------------------|--|--| | O-180
(5200-00) | Dry weather testing was attempted, but there was no flow in the network. It was subsequently CCTVed throughout, and no illicit connections were detected. Finally, stormwater flowing into some of its catch basins was tested during the same storm event as the outfall. Pollutant levels at the catch basins were of the same order of magnitude as those at the outfall. | No control measures have been implemented, as the high pollutant levels are believed to be caused by wildlife in the area. | ## 4. Prioritized outfall monitoring (Section 6(i)(1)(D) / page 43) Once outfall screening has been completed for at least 50% of outfalls to impaired waters, identify 6 of the highest contributors of any pollutants of concern. Begin monitoring these outfalls on an annual basis by July 1, 2020. | Laboratory (if used) | |----------------------| | | | | | | | | | | | | Data is now available for 50% of the outfalls, and annual monitoring will begin during 2022. # Part III: Additional IDDE Program Data [This section required beginning with 2018 Annual Report] # 1. Assessment and Priority Ranking of Catchments data (Appendix B (A)(7)(c) / page 5) Provide a list of all catchments with ranking results (DEEP basins may be used instead of manual catchment delineations). | 1. Catchment ID
(DEEP Basin ID) | 2. Category | 3. Rank | |---|---------------|---------| | 5302-00
Mill River | Problem | 1 | | 5305-00
West River | Problem | 2 | | 5304-00
Wintergreen Brook | Problem | 3 | | 5000-48
South Central
Shoreline (Inner
Harbor) | Problem | 4 | | 5200-00
Quinnipiac | High Priority | 5 | | 5000-45
South Central
Shoreline (Morris
Cove) | Low Priority | 6 | # 2. Outfall and Interconnection Screening and Sampling data (Appendix B (A)(7)(d) / page 7) ### 2.1 Dry weather screening and sampling data from outfalls and interconnections Provide sample data for outfalls where flow is observed. Only include Pollutant of concern data for outfalls that discharge into stormwater impaired waterbodies. | Interconnection /s | creening sample Ammon | a Chlorine | Conductivity | Salinity | E. coli or enterococcus | Surfactants | Water
Temp | Pollutant of concern | If required, follow-up actions taken | |--------------------|-----------------------|------------|--------------|----------|-------------------------|-------------|---------------|----------------------|--------------------------------------| |--------------------|-----------------------|------------|--------------|----------|-------------------------|-------------|---------------|----------------------|--------------------------------------| | No. decoupables | | | | | |-----------------|--|--|--|--| | No dry weather | | | | | | screening has | | | | | | been | | | | | | | | | | | | undertaken to | | | | | | date | | | | | ## 2.2 Wet weather sample and inspection data Provide sample data for outfalls and key junction manholes of any catchment area with at least one System Vulnerability Factor. | Outfall /
Interconnection
ID | Sample
date | Ammonia
Mg/l | Chlorine
Mg/l | Conductivity
Umhos/cm | Salinity
ppt | E. coli or Enterococcus MPN/100mls | Surfactants
Mg/I | Water Temp | Pollutant of concern | |------------------------------------|----------------|-----------------|------------------|--------------------------|-----------------|------------------------------------|---------------------|--------------|----------------------| | D-180 | 6/21/18 | 0.08 | <0.02 | 678 | <0.5 | See above | <0.05 | Not recorded | Bacteria N P | | 0-119 | 6/28/18 | 0.42 | < 0.02 | 112 | <0.5 | See above | 0.67 | Not recorded | Bacteria N P | | 0-11 | 11/13/18 | 0.17 | < 0.02 | 186 | <0.5 | See above | 0.09 | 10.2 | Bacteria N P | | 0-7 | 11/13/18 | 5.14 | <0.02 | 505 | <0.5 | See above | 0.86 | 16 | Bacteria N P | | O-10 | 12/28/18 | 3.64 | < 0.02 | 678 | <0.5 | See above | 0.25 | 12.2 | Bacteria N P | | O-12 |
11/13/18 | < 0.05 | < 0.02 | 106 | <0.5 | See above | <0.05 | 9.8 | Bacteria N P | | O-13 | 12/28/18 | 4.60 | < 0.02 | 276 | <0.5 | See above | 0.35 | 11.5 | Bacteria N P | | 0-14 | 11/13/18 | < 0.05 | < 0.02 | 118 | <0.5 | See above | 0.07 | 9.5 | Bacteria N P | | 0-41 | 12/28/18 | 3.42 | <0.02 | 276 | <0.5 | See above | 0.75 | 8.2 | Bacteria N P | | 0-46 | 12/21/18 | 0.06 | <0.02 | 14 | <0.5 | See above | < 0.05 | 9.5 | Bacteria N P | | 0-47 | 12/21/18 | 0.10 | < 0.02 | 15 | <0.5 | See above | 0.11 | 8.4 | Bacteria N P | | O-57 | 12/28/18 | 13.10 | <0.02 | 488 | <0.5 | See above | 2.15 | 17.6 | Bacteria N P | | O-58 | 12/28/18 | 11.50 | < 0.02 | 515 | <0.5 | See above | 2.23 | 11.9 | Bacteria N P | | O-66 | 11/13/18 | 0.15 | 0.02 | 24 | < 0.5 | See above | < 0.05 | 8.8 | Bacteria N P | | O-68 | 12/28/18 | 0.40 | < 0.02 | 120 | <0.5 | See above | 0.12 | 5.3 | Bacteria N P | | O-87 | 12/28/18 | 10.8 | < 0.02 | 528 | <0.5 | See above | 6.29 | 13.4 | Bacteria N P | | O-88 | 12/28/18 | 0.22 | < 0.02 | 51 | <0.5 | See above | 0.14 | 7.5 | Bacteria N P | | O-89 | 12/21/18 | 0.14 | < 0.02 | 39 | <0.5 | See above | 0.11 | 10.7 | Bacteria N P | | 0-121 | 12/21/18 | 0.10 | < 0.02 | 49 | <0.5 | See above | 0.08 | 10.6 | Bacteria N P | | 0-132 | 12/21/18 | 0.23 | < 0.02 | 300 | < 0.5 | See above | 0.07 | 12.1 | Bacteria N P | | O-138 | 12/21/18 | 0.14 | 0.03 | 48 | <0.5 | See above | <0.05 | 10.3 | Bacteria N P | | 0-81 | 6/18/19 | 0.13 | <0.02 | 42 | <0.5 | See above | <0.05 | 21.4 | Bacteria N P | | 0-122 | 4/26/19 | 0.37 | < 0.02 | 179 | <0.5 | See above | 0.16 | 12.6 | Bacteria N P | | 0-124 | 4/26/19 | 34.20 | <0.02 | 471 | <0.5 | See above | 13.9 | 14.4 | Bacteria N P | | O-124X | 4/26/19 | 0.92 | <0.02 | 432 | <0.5 | See above | 0.44 | 13.7 | Bacteria N P | | D-125 | 4/26/19 | 0.17 | < 0.02 | 4250 | 3.1 | See above | < 0.05 | 11.7 | Bacteria N P | |--------|----------|-------|--------|---------|-------|-----------|--------|------|--------------| | D-126 | 4/26/19 | 14.5 | < 0.02 | 608 | < 0.5 | See above | 1.92 | 13.2 | Bacteria N P | | 0-126 | 12/9/19 | 0.51 | < 0.02 | 205 | <0.5 | See above | 0.2 | 9.9 | Bacteria N P | | 0-127 | 4/26/19 | 0.18 | < 0.02 | 254 | <0.5 | See above | 0.09 | 13.3 | Bacteria N P | | 0-128 | 4/26/19 | 0.11 | < 0.02 | 578 | < 0.5 | See above | 0.13 | 13.6 | Bacteria N P | |)-128 | 12/9/19 | ** | ** | ** | ** | See above | ** | ** | Bacteria N P | |)-129 | 6/18/19 | 0.12 | < 0.02 | 19 | <0.5 | See above | < 0.05 | 21.3 | Bacteria N P | |)-129 | 12/9/19 | 0.44 | < 0.02 | 928 | 0.5 | See above | 0.41 | 9.0 | Bacteria N P | | 0-133 | 6/18/19 | <0.25 | <0.02 | 525 | <0.5 | See above | 0.07 | 22.1 | Bacteria N P | | 0-133 | 6/18/19 | <0.25 | <0.02 | 60 | <0.5 | See above | 0.21 | 22 | Bacteria N P | | 7-134 | 0/10/13 | 10.23 | 10.02 | | | | | | | |)-122 | 2/6/20 | 0.36 | <0.02 | 277 | <0.5 | See above | 0.11 | 3.4 | Bacteria N P | | D-124 | 2/6/20 | 1.06 | <0.10 | 902 | <0.05 | See above | 0.21 | 4.3 | Bacteria N P | | 0-124 | 3/13/20 | 0.13 | <0.02 | 487 | <0.5 | See above | < 0.05 | 9.0 | Bacteria N P | |)-162 | 3/13/20 | 0.3 | <0.02 | 30 | <0.5 | See above | 0.27 | 9.8 | Bacteria N P | |)-162A | 3/13/20 | 0.17 | <0.02 | 25 | <0.5 | See above | 0.06 | 9.6 | Bacteria N P | |)-44 | 3/19/20 | 0.29 | 0.03 | 29 | <0.5 | See above | 0.19 | 7.4 | Bacteria N P | |)-6 | 3/19/20 | 0.06 | <0.02 | 15 | <0.5 | See above | 0.08 | 6.3 | Bacteria N P | |)-24 | 3/19/20 | 0.13 | <0.02 | 9 | <0.5 | See above | 0.06 | 6.1 | Bacteria N P | |)-25 | 3/19/20 | 0.10 | <0.02 | 21 | <0.5 | See above | < 0.05 | 6.0 | Bacteria N P | |)-141 | 4/24/20 | 0.13 | <0.02 | 390 | <0.5 | See above | 0.18 | 6.6 | Bacteria N P | |)-147 | 4/24/20 | 7.13 | <0.02 | 933 | 0.5 | See above | 1.04 | 11.2 | Bacteria N P | |)-148 | 4/27/20 | <0.05 | <0.02 | 403 | <0.5 | See above | 0.07 | 9.8 | Bacteria N P | |)-156 | 6/11/20 | 2.67 | <0.02 | 238,000 | 328 | See above | 0.68 | 21.0 | Bacteria N P | |)-15 | 10/2/20 | 0.5 | 0.12 | 182 | <0.5 | See above | 0.25 | 20.3 | Bacteria N P | |)-16 | 10/2/20 | 0.16 | <0.02 | 206 | <0.5 | See above | 0.19 | 18.7 | Bacteria N P | |)-21 | 10/2/20 | 0.16 | <0.02 | 161 | <0.5 | See above | 161 | 19.8 | Bacteria N P | |)-60A | 10/29/20 | 0.21 | <0.02 | 15 | <0.5 | See above | 0.25 | 12.2 | Bacteria N P | |)-45 | 10/29/20 | 0.33 | <0.02 | 29 | <0.5 | See above | 0.16 | 12.0 | Bacteria N P | |)-25 | 10/29/20 | 1.35 | 0.04 | 77 | <0.5 | See above | 0.34 | 10.8 | Bacteria N P | | 0-26 | 10/29/20 | 0.15 | <0.02 | 35 | <0.5 | See above | 0.14 | 11.9 | Bacteria N P | | 0-61 | 04/15/21 | 2.54 | <0.02 | 216 | <0.5 | See above | 0.46 | 12.2 | Bacteria N P | | | 04/15/21 | 21.4 | <0.02 | 565 | <0.5 | See above | 11.4 | 17.2 | Bacteria N P | Due to the size of this document computer glitches have occurred in preparing it. For 2022 water testing results please refer to Appendix 1. It is hoped this problem can be resolved before the final report is published in April 2023. ## 3. Catchment Investigation data (Appendix B (A)(7)(e) / page 9) #### 3.1 System Vulnerability Factor Summary For those catchments being investigated for illicit discharges (i.e. categorized as high priority, low priority, or problem) document the presence or absence of System Vulnerability Factors (SVF). If present, report which SVF's were identified. An example is provided below. | Outfall
ID | Receiving Water | | System Vulnerability Factors | |---------------|--------------------|----------|------------------------------| | O-180 | 5200-00 Quinnipiac | 9, 10 | | | 0-119 | 5305-00 West River | 6, 9, 10 | | | 0-11 | 5305-00 West River | 5, 6, 10 | | | 0-7 | 5305-00 West River | 6, 10 | | | 0-10 | 5305-00 West River | 5, 6, 10 | | | 0-12 | 5305-00 West River | 5, 6, 10 | | | O-13 | 5305-00 West River | 5, 6, 10 | | | 0-14 | 5305-00 West River | 6, 10 | | | 0-41 | 5305-00 West River | 6, 10 | | | O-46 | 5305-00 West River | 6, 10 | | | 0-47 | 5305-00 West River | 6, 10 | | | O-57 | 5305-00 West River | 6 | | | O-58 | 5305-00 West River | 6 | | | 0-66 | 5305-00 West River | 6, 10 | | | O-68 | 5305-00 West River | 10 | | | 0-81 | 5305-00 West River | 6 | | | O-87 | 5305-00 West River | 6, 9, 10 | | | O-88 | 5305-00 West River | 6, 9, 10 | | | O-89 | 5305-00 West River | 6, 9, 10 | | | O-121 | 5302-00 Mill River | 6, 9, 10 | | | 0-122 | 5302-00 Mill River | 6, 9, 10 | | | 0-124 | 5302-00 Mill River | 6, 9, 10 | | | O-124X | 5302-00 Mill River | 6, 9, 10 | | | | EDGG GG AAIH Dissan | 6.0.10 | |--------|---------------------------|----------| | 0-125 | 5302-00 Mill River | 6, 9, 10 | | 0-126 | 5302-00 Mill River | 6, 9, 10 | | 0-127 | 5302-00 Mill River | 6, 9, 10 | | 0-128 | 5302-00 Mill River | 6, 9, 10 | | 0-129 | 5302-00 Mill River | 6, 9, 10 | | 0-132 | 5302-00 Mill River | 6, 9, 10 | | 0-133 | 5302-00 Mill River | 6, 9, 10 | | 0-134 | 5302-00 Mill River | 6, 9, 10 | | O-138 | 5302-00 Mill River | 6, 9, 10 | | 0-122 | 5302-00 Mill River | 6 ,9, 10 | | 0-124 | 5302-00 Mill River | 6 ,9, 10 | | 0-161 | 5000-48 Inner Harbor | 6 ,9, 10 | | 0-162 | 5000-48 Inner Harbor | 6 ,9, 10 | | O-162A | 5000-48 Inner Harbor | 6, 9, 10 | | O-6 | 5305-00 West River | 6, 9, 10 | | 0-24 | 5305-00 West River | 6, 9, 10 | | O-25 | 5305-00 West River | 6, 9, 10 | | 0-141 | 5000-48 Inner Harbor | 6, 9, 10 | | 0-147 | 5000-48 Inner Harbor | 6, 9, 10 | | 0-148 | 5000-48 Inner Harbor | 6, 9, 10 | | 0-156 | 5000-48 Inner Harbor | 6, 9, 10 | | 0-15 | 5304-00 Wintergreen Brook | 6, 9, 10 | | 0-16 | 5304-00 Wintergreen Brook | 6, 9, 10 | | 0-21 | 5304-00 Wintergreen Brook | 6, 9, 10 | | O-60A | 5304-00 Wintergreen Brook | 6, 9, 10 | | 0-45 | 5305-00 West River | 6, 9, 10 | | 0-25 | 5305-00 West River | 6, 9, 10 | | 0-26 | 5305-00 West River | 6, 9, 10 | | 0-44 | 5305-00 West River | 6, 9, 10 | | 0-61 | 5304-00 Wintergreen Brook | 6, 9, 10 | | 0-62 | 5304-00 Wintergreen brook | 6, 9, 10 | | 0-109 | 5000-48 Inner Harbor | 6, 9, 10 | | 0-76 | 5305-00 West River | 6, 9, 10 | | 0-85 | 5305-00 West River | 6, 9, 10 | | 0-90 | 5305-00 West River | 6, 9, 10 | | 0-115 | 5000-48 Inner Harbor | 6,9,10 | | 0-114 | 5000-48 Inner Harbor | 6,9,10 | | 0-113 | 5000-48 Inner Harbor | 6,9,10 | | 0-113 | 5000-48 Inner Harbor | 6,9,10 | | 0-111 | JOOU TO IIIICI TIGI DOI | - ,-, | | O-103 | 5000-48 Inner Harbor | 6, 9, 10 | | |-------|----------------------|----------|--| | O-105 | 5000-48 Inner Harbor | 6, 9, 10 | | | 0-106 | 5000-48 Inner Harbor | 6, 9, 10 | | | O-107 | 5000-48 Inner Harbor | 6, 9, 10 | | | O-100 | 5000-48 Inner Harbor | 6, 9, 10 | | | 0-102 | 5000-48 Inner Harbor | 6, 9, 10 | | | 0-153 | 5000-48 Inner Harbor | 6, 9, 10 | | | 0-164 | 5000-48 Inner Harbor | 6 | | | 0-163 | 5000-48 Inner Harbor | 6 | | | 0-70 | 5305-00 West River | 6, 9, 10 | | | 0-77 | 5000-48 Inner Harbor | 6, 9, 10 | | | O-79 | 5304-05 Beaver Pond | 6, 9, 10 | | | 0-78 | 5304-05 Beaver Pond | 6, 9, 10 | | | 0-149 | 5000-48 Inner Harbor | 6 | | | O-150 | 5000-48 Inner Harbor | 6 | | | 0-151 | 5000-48 Inner Harbor | 6 | | | 0-152 | 5000-48 Inner Harbor | 6 | | #### Where SVFs are: - 1. History of SSOs, including, but not limited to, those resulting from wet weather, high water table, or fat/oil/grease blockages. - 2. Sewer pump/lift stations, siphons, or known sanitary sewer restrictions where power/equipment failures or blockages could readily result in SSOs. - 3. Inadequate sanitary sewer level of service (LOS) resulting in regular surcharging, customer back-ups, or frequent customer complaints. - 4. Common or twin-invert manholes serving storm and sanitary sewer alignments. - 5. Common trench construction serving both storm and sanitary sewer alignments. - 6. Crossings of storm and sanitary sewer alignments. - 7. Sanitary sewer alignments known or suspected to have been constructed with an underdrain system; - 8. Sanitary sewer infrastructure defects such as leaking service laterals, cracked, broken, or offset sanitary infrastructure, directly piped connections between storm drain and
sanitary sewer infrastructure, or other vulnerability factors identified through Inflow/Infiltration Analyses, Sanitary Sewer Evaluation Surveys, or other infrastructure investigations. - 9. Areas formerly served by combined sewer systems. - 10. Any sanitary sewer and storm drain infrastructure greater than 40 years old in medium and densely developed areas. - 11. Widespread code-required septic system upgrades required at property transfers (indicative of inadequate soils, water table separation, or other physical constraints of the area rather that poor owner maintenance). - 12. History of multiple local health department or sanitarian actions addressing widespread septic system failures (indicative of inadequate soils, water table separation, or other physical constraints of the area rather that poor owner maintenance). #### 3.2 Key junction manhole dry weather screening and sampling data | Key Junction
Manhole
ID | Screening /
Sample date | Visual/ olfactory
evidence of illicit
discharge | Ammonia | Chlorine | Surfactants | |---|----------------------------|---|---------|----------|-------------| | No dry
weather
samples were
taken during
2022 | | | | | | #### 3.3 Wet weather investigation outfall sampling data | Outfall
ID | Sample date | Ammonia | Chlorine | Surfactants | |---------------|-------------|---------|----------|-------------| | See 4.2.2 | | | | | | above. | | | | | ## 3.4 Data for each illicit discharge source confirmed through the catchment investigation procedure | Discharge
location | Source
location | Discharge description | Method of discovery | Date of discovery | Date of elimination | Mitigation or enforcement action | Estimated volume of flow removed | |--|--------------------|-----------------------|---------------------|-------------------|---------------------|----------------------------------|----------------------------------| | No illicit
discharge
locations
were found in
CCTV footage
reviewed
during 2022 | | | | | | | | #### **Part IV: Certification** "I have personally examined and am familiar with the information submitted in this document and all attachments thereto, and I certify that, based on reasonable investigation, including my inquiry of those individuals responsible for obtaining the information, the submitted information is true, accurate and complete to the best of my knowledge and belief. I understand that a false statement made in this document or its attachments may be punishable as a criminal offense, in accordance with Section 22a-6 of the Connecticut General Statutes, pursuant to Section 53a-157b of the Connecticut General Statutes, and in accordance with any other applicable statute." | Chief Elected Official or Principal Executive Officer | Document Prepared by | |---|--| | Print name:
Mayor Justin Elicker | Print name:
Giovanni Zinn, PE – City Engineer | | Signature / Date: | Signature / Date: |